Home
Class 11
MATHS
Determine the maximum and minimum values...

Determine the maximum and minimum values of the function `f(x)=2x^3-15x^2+36x+10`

Text Solution

Verified by Experts

maximum value=38, minimum value=37
Promotional Banner

Topper's Solved these Questions

  • 3D-GEOMETRY

    PATHFINDER|Exercise QUESTION BANK|39 Videos
  • BINOMIAL THEOREM

    PATHFINDER|Exercise QUESTION BANK|225 Videos

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x)=x^(2)-x+2 is -

The minimum value of the function f(x)=2|x-1|+|x-2| is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

The maximum value of the function f(x)=5-x-x^(2) is -

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].

If M and m are the maximum and minimum values respectively of the function f(x)= x+ (1)/(x) , then the value of M - m is-

Find the maximum value of the function 2x^(3)+3x^(2)-36x+10 .

Find the maximum and minimum values, if any, of the functions given by f(x) = |x + 2| – 1

Find the maximum and minimum values, if any, of the functions given by f (x) = (2x – 1)^(2)+ 3

Find the maximum and minimum values, if any, of the functions given by f(x) = – (x -1)^(2) + 10