Home
Class 11
MATHS
Let alpha,beta be the roots of x^2-x-1=0...

Let `alpha,beta` be the roots of `x^2-x-1=0` and `S_n=alpha^n+beta^n`, for all integers `nge1`. Then for every integer `nge2`,

A

S_n+S_(n+1)=S_(n+1)`

B

S_n-S_(n-1)=S_(n+1)`

C

`S_(n-1)=S_(n+1)`

D

S_n+S_(n-1)=2S_(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUADRATIC EQUATION

    PATHFINDER|Exercise QUESTION BANK|19 Videos
  • RECTANGULAR CO-ORDINATES

    PATHFINDER|Exercise QUESTION BANK|27 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be the roots of x^(2)-x-1=0 and S_(n)=a^(n)+beta^(n) , for all integers n ge 1 . Then for every integer n gt 2 ,

Let alpha, beta be the roots of the equation x^(2)-6x-2=0 with alpha gt beta . If a_(n)=alpha^(n)-beta^(n) for n ge 1 , then the value of (a_(10)-2a_(8))/(2a_(9)) is

Knowledge Check

  • Let alpha,beta be the roots of x^(2)-x-1=0ands_(n)=alpha^(n)+beta^(n) for all integers nge1 . Then for every integer nge2 -

    A
    `S_(n)+S_(n-1)=S_(n+1)`
    B
    `S_(n)+S_(n-1)=S_(n)`
    C
    `S_(n-1)=S_(n+1)`
    D
    `S_(n)+S_(n-1)=2S_(n+1)`
  • Let alpha and beta be the roots of the equation x^2-6x-2=0 . If a_n=alpha^n-beta^n , for nge1 , then the value of (a_10-2a_8)/(2a_9) is equal to

    A
    -6
    B
    3
    C
    -3
    D
    6
  • Let alpha and beta be the roots of equation x^(2)-6x-2=0." If " a_(n)=alpha^(n)-beta^(n)," for "nge1 , "then the value of " ((a_(10))-(2a_(8)))/(2a_(9)) is equal to -

    A
    3
    B
    `-3`
    C
    6
    D
    `-6`
  • Similar Questions

    Explore conceptually related problems

    If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.

    Let alpha,beta be the roots of x^(2)-2xcosphi+1=0 , then the equation whose roots are alpha^(n),beta^(n) is

    Let alpha_1,beta_1 be the roots x^2-6x+p=0a n d alpha_2,beta_2 be the roots x^2-54 x+q=0dot If alpha_1,beta_1,alpha_2,beta_2 form an increasing G.P., then sum of the digits of the value of (q-p) is ___________.

    Let alphaandbeta be the roots of x^(2)+x+1=0 . If n be positive integer, then alpha^(n)+beta^(n) is

    If alpha and beta are the roots of x^2-x+1=0 ,then the value of alpha^(2013)+beta^(2013) is equal to