Home
Class 11
MATHS
A sequence of no. a1,a2,a3 ..... satisfi...

A sequence of no. `a_1,a_2,a_3 `..... satisfies the relation `a_n=a_(n-1)+a_(n-2)` for `nge2`. Find `a_4` if `a_1=a_2=1`.

Text Solution

Verified by Experts

Putting n=2 in the given relation
`a_3=a_1+a_2=2`
`therefore n=3 rArra_4=a_3+a_2=(2+1)=3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROBABILITY

    PATHFINDER|Exercise QUESTION BANK|41 Videos
  • QUADRATIC EQUATION

    PATHFINDER|Exercise QUESTION BANK|19 Videos

Similar Questions

Explore conceptually related problems

A sequence of integers a_1+a_2+......+a_n satisfies a_(n+2)=a_(n+1)-a_n for ngeq1 . Suppose the sum of first 999 terms is 1003 and the sum of the first 1003 terms is -99. Find the sum of the first 2002 terms.

Find the sum of first 24 terms of the A.P. a_1,a_2, a_3 ......., if it is inown that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

Knowledge Check

  • If a_1,a_2,.....a_n are in H.P., then the expression a_1a_2 + a_2a_3 + ... + a_(n-1)a_n is equal to

    A
    `(n - 1)(a_1 - a_n)`
    B
    `na_1a_n`
    C
    `(n - 1) a_1a_n`
    D
    `n(a_1 - a_n)`
  • Similar Questions

    Explore conceptually related problems

    The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_n =a_(n-1)+a_(n-2) , n gt 2 Find (a_(n+1))/a_n for n = 1, 2, 3, 4, 5

    If the sequence a_1, a_2, a_3,....... a_n ,dot forms an A.P., then prove that a_1^2-a_2^2+a_3^2-a_4^2+.......+ a_(2n-1)^2 - a_(2n)^2=n/(2n-1)(a_1^2-a_(2n)^2)

    The Fibonacci sequence is defined by 1=a_1=a_2 and a_n=a_(n-1)+a_(n-2,)n > 2. Find (a_(n+1))/(a_n) , for n=5.

    Let vec r_1, vec r_2, vec r_3, .....vec r_n be the position vectors of points P_1,P_2, P_3 ,......P_n relative to the origin O . If the vector equation a_1 vec r_1+a_2 vec r_2+.....a_n vec r_n=0 hold, then a similar equation will also hold w.r.t. to any other origin provided a) a_1+a_2+......a_n=n b) a_1+a_2+....a_n=1 c) a_1+a_2+....a_n=0 d) a_1=a_2=a_3+a_n=0

    Let a_1,a_2,a_3,.......a_11 be real number satisfying a_1=15,27-2a_2gt0 anda_k=2a_(k-1)-a_(k-2) for k=3,4,.....11. If (a_1^2+a_2^2+......a_11^2)/11=90, then the value of (a_1 +a_2+.....a_11)/11 is equal to

    Let lta_ngt be the sequence defined by a_1=3 and a_n =3a_(n-1)+2 for all n gt1 ..Find a_3 .

    If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant Delta=|[log a_n, log a_(n+1), log a_(n+2)],[log a_(n+3),loga_(n+4),log a_(n+5)],[log a_(n+6),log a_(n+7),log a_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0