Home
Class 11
MATHS
if z^2+z+1=0, then the value of (z+1/z)^...

if `z^2+z+1=0`, then the value of `(z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+......+(z^21+1/z^21)^2` is

A

21

B

42

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    PATHFINDER|Exercise QUESTION BANK|198 Videos
  • COMPLEX NUMBERS

    PATHFINDER|Exercise QUESTION BANK|67 Videos

Similar Questions

Explore conceptually related problems

If z^(2)+z+1=0 , then the value of (z+(1)/(z))^(2)+(z^(2)+(1)/(z^(2)))^(2)+.......+(z^(7)+(1)/(z^(7)))^2 will be

If z_1, z_2 in C ,z_1^2+z_2^2 in R ,z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1 ^2+z_2 ^2 is 10 b. 12 c. 5 d. 8

In complex plane z_(1), z_(2) and z_(3) be three collinear complex numbers, then the value of |(z_(1),barz_(1),1),(z_(2),barz_(2),1),(z_(3), barz_(3),1)| is -

z_1 and z_2 be two complex no. then prove that abs(z_1+z_2)^2+abs(z_1-z_2)^2=2[abs(z_1)^2+abs(z_2)^2]

If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

z_1, z_2, z_3 are three points lying on the circle absz=1 , maximum value of abs(z_1-z_2)^2+abs(z_2-z_3)^2+abs(z_3-z_1)^2 is

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

It is given that complex numbers z_1 and z_2 satisfy |z_1|=2 and |z_2|=3. If the included angled of their corresponding vectors is 60^0 , then find the value of 19|(z_1-z_2)/(z_1+z_2)|^2 .

PATHFINDER-COMPLEX NUMBER-QUESTION BANK
  1. If absz=min{abs(z-1), abs(z+1)}, then

    Text Solution

    |

  2. If z1 and z2 be two complex numbers such that abs(z1+z2)=abs(z1) +abs(...

    Text Solution

    |

  3. if z^2+z+1=0, then the value of (z+1/z)^2+(z^2+1/z^2)^2+(z^3+1/z^3)^2+...

    Text Solution

    |

  4. If omega is the imaginary cube root of 1 then prove that (a+bomega+com...

    Text Solution

    |

  5. If z1=a+ib and z2=c+id, a, b, c, dinR, be two complex numbers such tha...

    Text Solution

    |

  6. The sum of the series 2(omega+1)(omega^2+1)+3(2omega+1)(2omega^2+1)+...

    Text Solution

    |

  7. If abs(z-2-2i)=1, then the minimum value of absz is

    Text Solution

    |

  8. The point represented by the complex number 2-i is rotated about origi...

    Text Solution

    |

  9. z1 and z2 be two complex no. then prove that abs(z1+z2)^2+abs(z1-z2)^2...

    Text Solution

    |

  10. For all complex numbers z1, z2 satisfying absz1=12 and abs(z2-3-4i)=5,...

    Text Solution

    |

  11. if z and w are two non-zero complex numbers such that absz=absw and ar...

    Text Solution

    |

  12. If z1, z2, z3, z4 represent the vertices of a rhombus in anticlockwise...

    Text Solution

    |

  13. If (x+iy)^7=a+ib, then (y+ix)^7 is equal to

    Text Solution

    |

  14. (1+i)^(n1)+(1+i^3)^(n1)+(1+i^5)^(n2)+(1+i^7)^(n2) is a real number if

    Text Solution

    |

  15. The value of underset(k=1)overset10sum(-sin((2kpi)/11)+icos((2kpi)/11)...

    Text Solution

    |

  16. If amp(z1z2)=0 and absz1=absz2=1, then

    Text Solution

    |

  17. if z1, z2, z3 are the vertices pf an equilateral triangle inscribed in...

    Text Solution

    |

  18. if amp (z-1)/(z+1)=pi/3, then the locus of z is

    Text Solution

    |

  19. If e^(ialpha)=cosalpha+isinalpha, then for the DeltaABC, the value of ...

    Text Solution

    |

  20. The equation zbarz+(4-3i)z+(4+3i)barz+5=0 represents a circle of radiu...

    Text Solution

    |