Home
Class 11
MATHS
Let omega=e^(ipi/3),and a,b,c,x,y,z be n...

Let `omega=e^(ipi/3)`,and a,b,c,x,y,z be non zero complex numbers such that `a+b+c=x`
`a+bomega+comega^2=y`
`a+bomega^2+comega=z` then the value of `(absx^2+absy^2+absz^2)/(absa^2+absb^2+absc^2)` is

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    PATHFINDER|Exercise QUESTION BANK|198 Videos
  • COMPLEX NUMBERS

    PATHFINDER|Exercise QUESTION BANK|67 Videos

Similar Questions

Explore conceptually related problems

If z_1 and z_2 are non zero complex numbers such that abs(z_1-z_2)=absz_1+absz_2 then

If x=a+b , y=aomega+bomega^2 , z=aomega^2+bomega then show that , x^3+y^3+z^3=3(a^3+b^3)

prove that , (a+bomega+comega^(2))^(3)+(a+bomega^(2)+comega)^(3)=27abc if a+b+c=0.

If z(Re z ne2) be a complex number such that z^2-4z=absz^2+16/absz^3 then the value of absz^4 is

If omega is the imaginary cube root of unity and a+b+c=0 then show that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3=27abc

Let x , y , z be non - zero real numbers lying in the interval [-1,1] such that cos^-1 x + cos^-1 y + cos^-1 z = pi The value of x sqrt(1 - x^2) + ysqrt(1 - y^2) + zsqrt(1 - z^2) is equal to

If omega is an imaginary cube root of unity , prove that, |{:(a,b,c),(b,c,a),(c,a,b):}|=-(a+b+c)(a+bomega+comega^2)(a+bomega^2+comega)

If omega is the imaginary cube root of 1 then prove that (a+bomega+comega^2)^3+(a+bomega^2+comega)^3 = (2a-b-c)(2b-a-c)(2c-a-b)

If a ,b , c are nonzero real numbers such that |[b c,c a, a b],[ c a, a b,b c],[ a b,b c,c a]|=0,t h e n 1/a+1/(bomega)+1/(comega^2)=0 b. 1/a+1/(bomega^2)+1/(comega)=0 c. 1/(aomega)+1/(bomega^2)+1/c=0 d. none of these

PATHFINDER-COMPLEX NUMBER-QUESTION BANK
  1. The value of absz^2+abs(z-3)^2+abs(z-i)^2 is minimum when z equals

    Text Solution

    |

  2. Let z1 be a fixed point on the circle of radius 1 centered at the orig...

    Text Solution

    |

  3. Let alpha ,beta denote the cube roots of unity other than 1 and alpha ...

    Text Solution

    |

  4. Let complex numbers alpha and 1/alpha^- lie on circles (x-x0)^2+(y-y0...

    Text Solution

    |

  5. If z is a complex number of unit modulus and argument theta then arg(...

    Text Solution

    |

  6. Let z1=2+3i and z2=3+4i be two points on the complex plane then the se...

    Text Solution

    |

  7. Suppose z=x+iy where x and y are real numbers and i=sqrt(-1) the point...

    Text Solution

    |

  8. If P,Q,R are angles of an isosceles triangle and anglep=pi/2 then the ...

    Text Solution

    |

  9. Let z be a complex number such that the imaginary part of z is non zer...

    Text Solution

    |

  10. If z ne 1 and (z^2)/(z-1) is real then the point represented by the co...

    Text Solution

    |

  11. The maximum value of absz when the complex number z satisfies the cond...

    Text Solution

    |

  12. If (3/2+isqrt3/2)^50=3^25(x+iy)where x and y are real then the order P...

    Text Solution

    |

  13. If (z-1)/(z+1) is purely imaginary then

    Text Solution

    |

  14. The points representing the complex number z for which arg((z-2)/(z+2)...

    Text Solution

    |

  15. if z is any complex number satisfying abs(z-3-2i)le2 then the minimum ...

    Text Solution

    |

  16. Let omega=e^(ipi/3),and a,b,c,x,y,z be non zero complex numbers such t...

    Text Solution

    |

  17. If omega(ne1) is a cube root of unity and (1+omega)^7=A+Bomega then (A...

    Text Solution

    |

  18. For the real parameter t,the locus of the complex number z=(1-t^2)+isq...

    Text Solution

    |

  19. If x+(1/x)=2costheta then for any integer n,x^n+1/x^n=

    Text Solution

    |

  20. If omega ne1 is a cube root of unity then the sum of the series S=1+2o...

    Text Solution

    |