Home
Class 11
MATHS
Sum of the series 2C0+C1/2 2^2 +C2/3 2...

Sum of the series
`2C_0+C_1/2 2^2 +C_2/3 2^3+………+C_n/(n+1) 2^(n+1)`

A

`(3^(n+1)-1) /(n-1)`

B

`(3^(n+1)-1) /(n+1)`

C

`(3^(n+1)+1) /(n+1)`

D

`(3^(n-1)-1) /(n+1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    PATHFINDER|Exercise QUESTION BANK |266 Videos
  • BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

    PATHFINDER|Exercise QUESTION BANK|68 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1+(1)/(2)""^(n)C_(1)+(1)/(3)""^(n)C_(2)+…+(1)/(n+1)""^(n)C_(n) is equal to-

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

Find the sum C_0+3C_1+3^2C_2+...+3^n C_ndot

If C_r stands for nC_r , then the sum of the series (2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2] ,where n is an even positive integer, is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+…+C_(n)x^(n) , show that, (C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+…+(C_(n))/(n+1)=(2^(n+1))/(n+1)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

Find the sum of the series upto n terms ((2n+1)/(2n-1))+3((2n+1)/(2n-1))^2+5((2n+1)/(2n-1))^3+.....

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

The value of determinant |[ ^n C_(r-1), ^n C_r, (r+1)^(n+2)C_(r+1)],[ ^n C_r, ^n C_(r+1),(r+2)^(n+2)C_(r+2)],[ ^n C_(r+1), ^n C_(r+2), (r+3)^(n+2)C_(r+3)]| is n^2+n-2 b. 0 c. ^n+3C_(r+3) d. ^n C_(r-1)+^n C_r+^n C_(r+1)

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

PATHFINDER-BINOMIAL THEOREM-QUESTION BANK
  1. The coefficients of x^p and x^q in the expansion of (1+x)^(p+q) are

    Text Solution

    |

  2. If x^m occurs in the expansion of (x+(1/x^2))^(2n) then the coefficien...

    Text Solution

    |

  3. Sum of the series 2C0+C1/2 2^2 +C2/3 2^3+………+Cn/(n+1) 2^(n+1)

    Text Solution

    |

  4. The value of nC0. ^nCn +^nC1 . ^nC(n-1)++……..+^nCn . ^nC0

    Text Solution

    |

  5. If (1+x)^(15)=C0+C1x+C2x^2+……..+C(15)x^(15) then ,^15C0^2-^15C1^2+^15C...

    Text Solution

    |

  6. If sn= sum(r=0)^n 1/(^"nCr) and tn=sum(r=0)^n r/("^nCr) then tn/sn is ...

    Text Solution

    |

  7. The fractional part of =(2^(4n))/15 is

    Text Solution

    |

  8. If the fourth term in the expansion of (px+(1/x))^n is independent of ...

    Text Solution

    |

  9. Find the coefficient of x^20 in the expression of (1+x^2)^40(x^2+2+1/x...

    Text Solution

    |

  10. Let n be a positive integer such that (1+x+x^2)^n=a0+a1x+a2x^2+…….+a(2...

    Text Solution

    |

  11. Let n be a positive integer such that (1+x+x^2)^n=a0+a1x+a2x^2+…….+a(2...

    Text Solution

    |

  12. The greatest integer which divides the number 101^(100)-1 is

    Text Solution

    |

  13. Coefficient of x^(11) in the expansion of (1+3x+2x^2)^6 is equal to

    Text Solution

    |

  14. Show that 101^(50)gt 99^(50)+100^(50)

    Text Solution

    |

  15. The greatest term (numerically) in the expansion of (2+3x)^9 when x=3/...

    Text Solution

    |

  16. If agt0 and coefficients of x^5 and x^(15) in the expansion of (x^2+a/...

    Text Solution

    |

  17. 1/(n!)+1/(2!(n-2)!)+1/(4!(n-4)!)+ …… is equal to

    Text Solution

    |

  18. The coefficients of x^n in (1+x/(1!)+x^2/(2!)+……+x^n/(n!))^2 is

    Text Solution

    |

  19. The sum of the coefficients of all the integral powers of x in the exp...

    Text Solution

    |

  20. The coefficient of x^m in (1+x)^r+ (1+x)^(r+1)+(1+x)^(r+2)+………+(1+x)^n...

    Text Solution

    |