Home
Class 11
MATHS
If the coefficients of four consecutive ...

If the coefficients of four consecutive terms in the expansion of `(1+x)^n` are `a_1,a_2,a_3` and `a_4` respectively. then prove that `a_1/(a_1+a_2)+a_3/(a_3+a_4)=2a_2/(a_2+a_3).

Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    PATHFINDER|Exercise QUESTION BANK |266 Videos
  • BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

    PATHFINDER|Exercise QUESTION BANK|68 Videos

Similar Questions

Explore conceptually related problems

If the coefficient of-four successive termsin the expansion of (1+x)^n be a_1 , a_2 , a_3 and a_4 respectivel. Show that a_1/(a_1+a_2)+a_3/(a_3+a_4)=2 a_2/(a_2+a_3)

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_1, a_2 are the coefficients of x^n in the expansion of (1+x)^(2n) & (1+x)^(2n-1) respectively then a_1:a_2 will be

If a_1,a_2,a3,...,a_n are in A.P then show that 1/(a_1a_2)+1/(a_2a_3)+1/(a_3a_4)+...+1/(a_(n-1)a_n)=(n-1)/(a_1a_n)

If a_1, a_2,...... ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)+.....+(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If the points ( a_1,b_1),(a_2,b_2) and (a_1+a_2,b_1+b_2) are collinear ,show that a_1b_2=a_2b_1 .

Find the sum of first 24 terms of the A.P. a_1,a_2, a_3 ......., if it is inown that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

If (1+x)^n=a_0+a_1x+a_2x^2+…..+a_nx^n then show that (a_0-a_2+a_4-……)^2+(a_1-a_3+a_5-……)^2=a_0+a_1+a_2+……a_n

If a_r=(cos2rpi+i sin 2rpi)^(19) , then prove that |[a_1,a_2,a_3],[a_4,a_5,a_6],[a_7,a_8,a_9]|=0 .

A sequence of no. a_1,a_2,a_3 ..... satisfies the relation a_n=a_(n-1)+a_(n-2) for nge2 . Find a_4 if a_1=a_2=1 .

PATHFINDER-BINOMIAL THEOREM-QUESTION BANK
  1. The coefficient of the middle term of the expansion of (1-2x+x^2)^n is

    Text Solution

    |

  2. Find the coefficient of x^4 in the expansion of (1+x-2x^2)^7

    Text Solution

    |

  3. If the coefficients of four consecutive terms in the expansion of (1+x...

    Text Solution

    |

  4. If (1+x)^n=sum(r=0)^nCrx^r prove that (2^2C0)/(1 . 2)+(2^3C1)/(2 . 3)+...

    Text Solution

    |

  5. If p+q=1, then show that sum(r=0)^nr^2^nCrp^rq^(n-r)=npq+n^2p^2

    Text Solution

    |

  6. Prove that C1+C5+C9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

    Text Solution

    |

  7. Prove that C1+C4+C7+....=1/3[2^n-2cos((n+1)/3pi)]

    Text Solution

    |

  8. Prove that (2nC0)^2-(2nC1)^2+(2nC2)^2+.....+(2nC2n)^2=(-1)^n2nCn

    Text Solution

    |

  9. The coefficient of x^9 in the expansion of (1+x)(1+x^2)(1+x^3)....(1+x...

    Text Solution

    |

  10. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  11. Number of irrational terms in the binomial expansion of (3^(1//5)+7^(1...

    Text Solution

    |

  12. Coefficient of x^11 in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^12 i...

    Text Solution

    |

  13. Let S=2/1^nC0+2^2/2^nC1+2^3/3^nC2+....+2^(n+1)/(n+1)^nCn. Then S equal...

    Text Solution

    |

  14. The coefficient of x^3 in the infinite series expansion of 2/((1-x)(2-...

    Text Solution

    |

  15. The value of sum (nC1)^2+( nC2)^2+(nC3)^2+....+(nCn)^2 is

    Text Solution

    |

  16. If the coefficient of x^8 in (ax^2+1/(bx))^13 is equal to the coeffici...

    Text Solution

    |

  17. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  18. The coefficient of the term independent of x in the expansion of [((x+...

    Text Solution

    |

  19. Let n be a positive even integer. The ratio of the largest coefficient...

    Text Solution

    |

  20. The sum of the series 1/(1x2)*(25)C0+1/(2x3)*25C1+1/(3x4)*25C2+....+1/...

    Text Solution

    |