Home
Class 11
MATHS
If p+q=1, then show that sum(r=0)^nr^2^n...

If p+q=1, then show that `sum_(r=0)^nr^2^nC_rp^rq^(n-r)=npq+n^2p^2`

Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    PATHFINDER|Exercise QUESTION BANK |266 Videos
  • BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

    PATHFINDER|Exercise QUESTION BANK|68 Videos

Similar Questions

Explore conceptually related problems

If x+y=1, prove that sum_(r=0)^n .^nC_r x^r y^(n-r) = 1 .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum of sum_(r=1)^n r* (nC_r)/(nC_(r-1)

Find the sum sum_(r=1)^n r^n (^nC_r)/(^nC_(r-1)) .

Prove that sum_(r=0)^n r(n-r)(.^nC_ r)^2=n^2(.^(2n-2)C_n)dot

If 2lerlen show that ^nC_r +2 ^nC_(r-1) +^nC_(r-2)=^(n+2)C_r

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

PATHFINDER-BINOMIAL THEOREM-QUESTION BANK
  1. If the coefficients of four consecutive terms in the expansion of (1+x...

    Text Solution

    |

  2. If (1+x)^n=sum(r=0)^nCrx^r prove that (2^2C0)/(1 . 2)+(2^3C1)/(2 . 3)+...

    Text Solution

    |

  3. If p+q=1, then show that sum(r=0)^nr^2^nCrp^rq^(n-r)=npq+n^2p^2

    Text Solution

    |

  4. Prove that C1+C5+C9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

    Text Solution

    |

  5. Prove that C1+C4+C7+....=1/3[2^n-2cos((n+1)/3pi)]

    Text Solution

    |

  6. Prove that (2nC0)^2-(2nC1)^2+(2nC2)^2+.....+(2nC2n)^2=(-1)^n2nCn

    Text Solution

    |

  7. The coefficient of x^9 in the expansion of (1+x)(1+x^2)(1+x^3)....(1+x...

    Text Solution

    |

  8. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  9. Number of irrational terms in the binomial expansion of (3^(1//5)+7^(1...

    Text Solution

    |

  10. Coefficient of x^11 in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^12 i...

    Text Solution

    |

  11. Let S=2/1^nC0+2^2/2^nC1+2^3/3^nC2+....+2^(n+1)/(n+1)^nCn. Then S equal...

    Text Solution

    |

  12. The coefficient of x^3 in the infinite series expansion of 2/((1-x)(2-...

    Text Solution

    |

  13. The value of sum (nC1)^2+( nC2)^2+(nC3)^2+....+(nCn)^2 is

    Text Solution

    |

  14. If the coefficient of x^8 in (ax^2+1/(bx))^13 is equal to the coeffici...

    Text Solution

    |

  15. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  16. The coefficient of the term independent of x in the expansion of [((x+...

    Text Solution

    |

  17. Let n be a positive even integer. The ratio of the largest coefficient...

    Text Solution

    |

  18. The sum of the series 1/(1x2)*(25)C0+1/(2x3)*25C1+1/(3x4)*25C2+....+1/...

    Text Solution

    |

  19. If n is a possible integer, then (sqrt3+1)^(2n)-(sqrt3-1)^(2n) is

    Text Solution

    |

  20. Let the coefficients of powers of x in the 2^(nd), 3^(rd) and 4^(th) t...

    Text Solution

    |