Home
Class 11
MATHS
Prove that C1+C4+C7+....=1/3[2^n-2cos((n...

Prove that `C_1+C_4+C_7+....=1/3[2^n-2cos((n+1)/3pi)]`

Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS

    PATHFINDER|Exercise QUESTION BANK |266 Videos
  • BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

    PATHFINDER|Exercise QUESTION BANK|68 Videos

Similar Questions

Explore conceptually related problems

Prove that .^n C_0+^n C_3+^n C_6+=1/3(2^n+2cos((npi)/3)) .

Prove that C_1+C_5+C_9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

Prove that C_0+2C_1+4C_2+8C_3+.....+2^nC_n=3^n .

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

Prove that (C_1)/2+(C_3)/4+(C_5)/6+=(2^(n)-1)/(n+1)dot

Prove that ^mC_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-.....=(-1)^(m-1)n^mdot

Prove that (C_1)/1-(C_2)/2+(C_3)/3-(C_4)/4+....+((-1)^(n-1))/n C_n=1+1/2+1/3+...+1/n

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

Prove that "^n C_r+^(n-1)C_r+...+^r C_r=^(n+1)C_(r+1) .

PATHFINDER-BINOMIAL THEOREM-QUESTION BANK
  1. If p+q=1, then show that sum(r=0)^nr^2^nCrp^rq^(n-r)=npq+n^2p^2

    Text Solution

    |

  2. Prove that C1+C5+C9+....=1/2(2^(n-1)+2^(n//2)sin((npi)/4))

    Text Solution

    |

  3. Prove that C1+C4+C7+....=1/3[2^n-2cos((n+1)/3pi)]

    Text Solution

    |

  4. Prove that (2nC0)^2-(2nC1)^2+(2nC2)^2+.....+(2nC2n)^2=(-1)^n2nCn

    Text Solution

    |

  5. The coefficient of x^9 in the expansion of (1+x)(1+x^2)(1+x^3)....(1+x...

    Text Solution

    |

  6. The sum of coefficient of integral powers of x in the binomial expansi...

    Text Solution

    |

  7. Number of irrational terms in the binomial expansion of (3^(1//5)+7^(1...

    Text Solution

    |

  8. Coefficient of x^11 in the expansion of (1+x^2)^4(1+x^3)^7(1+x^4)^12 i...

    Text Solution

    |

  9. Let S=2/1^nC0+2^2/2^nC1+2^3/3^nC2+....+2^(n+1)/(n+1)^nCn. Then S equal...

    Text Solution

    |

  10. The coefficient of x^3 in the infinite series expansion of 2/((1-x)(2-...

    Text Solution

    |

  11. The value of sum (nC1)^2+( nC2)^2+(nC3)^2+....+(nCn)^2 is

    Text Solution

    |

  12. If the coefficient of x^8 in (ax^2+1/(bx))^13 is equal to the coeffici...

    Text Solution

    |

  13. The coefficients of three consecutive terms of (1+x)^(n+5) are in the ...

    Text Solution

    |

  14. The coefficient of the term independent of x in the expansion of [((x+...

    Text Solution

    |

  15. Let n be a positive even integer. The ratio of the largest coefficient...

    Text Solution

    |

  16. The sum of the series 1/(1x2)*(25)C0+1/(2x3)*25C1+1/(3x4)*25C2+....+1/...

    Text Solution

    |

  17. If n is a possible integer, then (sqrt3+1)^(2n)-(sqrt3-1)^(2n) is

    Text Solution

    |

  18. Let the coefficients of powers of x in the 2^(nd), 3^(rd) and 4^(th) t...

    Text Solution

    |

  19. The sum of the series 1+(1/2) ^nC1 +(1/3) ^nC2 +....+(1/(n+1)) ^nCn ...

    Text Solution

    |

  20. Let (1+x)^10=sum(r=0)^(10)crx^r and (1+x)^7=sum(r=0)^7drx^r . If P=sum...

    Text Solution

    |