Home
Class 11
MATHS
Let (1+x)^10=sum(r=0)^(10)crx^r and (1+x...

Let `(1+x)^10=sum_(r=0)^(10)c_rx^r` and `(1+x)^7=sum_(r=0)^7d_rx^r` . If `P=sum_(r=0)^5c_(2r)` and `Q=sum_(r=0)^3d_(2r+1)`, then P/Q is equal to

A

4

B

8

C

16

D

32

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS

    PATHFINDER|Exercise QUESTION BANK |266 Videos
  • BINOMIAL THEOREM AND PRINCIPLE OF MATHEMATICAL INDUCTION

    PATHFINDER|Exercise QUESTION BANK|68 Videos

Similar Questions

Explore conceptually related problems

Let (1+x)^10= sum_(r=0)^(10)c_(r) x^(r), and (1+x)^(7)= sum_(r=o)^(7)d_(r)x^(r). If P= sum_(r=0)^5c_(2r) and Q= sum_(r=o)^(3) d_(2r+1) , then (p)/(Q) is equl to

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Knowledge Check

  • If s_n= sum_(r=0)^n 1/(^"nC_r) and t_n=sum_(r=0)^n r/("^nC_r) then t_n/s_n is equal to

    A
    n-1
    B
    n/2-1
    C
    n/2
    D
    (2n-1)/2
  • If (1-x^2)^n=sum_(r=0)^na_rx^r(1-x)^(2n-r) , then a_r is equal to

    A
    `^nC_r`
    B
    `^nC_r 3^r`
    C
    `^(2n)C_r`
    D
    `^nC_r 2^r`
  • sum_(r=0)^(300)a_rx^r=(1+x+x^2+x^3)^(100) . If a=sum_(r=0)^(300)a_r , then sum_(r=0)^(300)ra_r is equal to

    A
    300a
    B
    100a
    C
    150a
    D
    75a
  • Similar Questions

    Explore conceptually related problems

    Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

    Find the sum sum_(r=0) .^(n+r)C_r .

    If (1+x)^n=sum_(r=0)^n .^nC_r x^r then sum_(r=m)^n .^rC_m is equal to

    sum_(r=1)^nr^2-sum_(m=1)^nsum_(r=1)^mr is equal to

    Let (1+x)^(10)=underset(r=0)overset(10)sumc_(r)x^(r)and(1+x)^(7)=underset(r=0)overset(7)sumd_(r)x^(r). " if "p=underset(r=0)overset(5)sumandQ=underset(r=0)overset(3)sumd_(2r+1)," then " (p)/(q) is equal to -