Home
Class 11
MATHS
Evaluate the right hand limit and left h...

Evaluate the right hand limit and left hand limit of the function
`f(x)={(|x-4|/(x-4), x ne 4),(0, x=4):}`

Answer

Step by step text solution for Evaluate the right hand limit and left hand limit of the functionf(x)={(|x-4|/(x-4), x ne 4),(0, x=4):} by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the range of the function f(x)=x^2-2x-4.

(x-1)/(x-4)gt0(x ne 4),x in R

Knowledge Check

  • The period of the function f(x)= tan 4x is-

    A
    `pi`
    B
    `2pi`
    C
    `pi/2`
    D
    `pi/4`
  • The left hand derivative of the function y = f(x) at x = a is Lf' (a) =

    A
    `underset(h to 0+)lim (f(a+h)-f(a))/(h)`
    B
    `underset(h to 0-)lim (f(a+h)-f(a))/(h)`
    C
    `underset(h to 0)lim (f(a+h)-f(a))/(h)`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Find the domain and range of the function f(x)=x/(x^2-5x+4)

    Find the domain and range of the function f(x)=(x)/(x^2-5x+4)

    Find the inverse of the function f(x)=(x^4+x^2+1)/x^2

    Evaluate the left-and right-hand limits of the function defined by f(x)={(1+x^2, 0lex<1), (2-x ,x gt1):} at x=1 Also, show that lim_(xrarr1)f(x) does not exist

    Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

    Evaluate the limits using the expansion formula of functions lim_(x->0)(e^x-1-x)/(x^2)