Home
Class 11
MATHS
Let f(x) = {(1+(2x)/lambda, o le x le 1)...

Let `f(x) = {(1+(2x)/lambda, o le x le 1), (lambda x, 1 le x le 2):}`
if `lim_(x rarr 1) f(x)` exists, then `lambda` is

A

-2

B

-1

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let f(x)={(1+x, 0 le x le 2), (3-x, 2 lt x lt 3):} Discuss the continuity of f, f' on [0, 2].

3(x-1) le 2 (x-3)

Solve 1 le |x-2| le 3

If f(x)={(x,"when "0le x le 1),(2x-1,"when "x gt 1):} then -

Let f(x) = 1 + 4x - x^(2), AA x in R g(x) = max {f(t), x le t le (x + 1), 0 le x lt 3} = min {(x + 3), 3 le x le 5} Verify conntinuity of g(x), for all x in [0, 5]

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

Find the domain and range of h(x) = g(f(x), where f(x) = {([x], -2lexle-1),(|x| + 1, -1 lt x le 2) :} and g(x) = {([x], -pi le x le 0), (sin x, 0 lt x le pi):}

A function is defined as follows : f(x) = {((x^(2))/(2),"when " 0 le x lt 1),(2x^(2) - 3x + (3)/(2),"when " 1 le x le 2):} Discuss the existence of f'(1).

If A = {x: -1 le x le 2} and B= {x:0 lt x le 4} then A nnB is equal to-

If f (x) ={{:(x",", "when " 0 lt x lt 1),(2-x",", "when" 1 lt x le 2):} then f'(1) is equal to-

PATHFINDER-LIMIT, CONTINUITY AND DIFFERENTIABILITY-QUESTION BANK
  1. If lim(x rarr 0)((a^x+b^x+c^x)/3)^(lambda/x), (a, b, c, lambda gt o) i...

    Text Solution

    |

  2. If f(x)=(|x|/(2 + |x|))^(2x), then

    Text Solution

    |

  3. Let f(x) = {(1+(2x)/lambda, o le x le 1), (lambda x, 1 le x le 2):} ...

    Text Solution

    |

  4. If m, n in N, lim x tends to 0 '(sin(x^m)/sin(x^n))​' (m, n∈N)=0, lf

    Text Solution

    |

  5. Let f(x) = (1-cos4x)/x^2, g(x) sqrtx/(sqrt(16+sqrtx)-4) and phi(x) ...

    Text Solution

    |

  6. Let f(x) = (1-cos4x)/x^2, g(x) sqrtx/(sqrt(16+sqrtx)-4) and phi(x) ...

    Text Solution

    |

  7. Let f(X) = lfloorxrfloor - lceilingxrceiling for all x in R Answer t...

    Text Solution

    |

  8. Let f(X) = lfloorxrfloor - lceilingxrceiling for all x in R Answer t...

    Text Solution

    |

  9. Match List - I with List-II

    Text Solution

    |

  10. Match List - I with List-II

    Text Solution

    |

  11. Let f and g be two continuous and let h be defined as h(x) = lim(n r...

    Text Solution

    |

  12. If lim(x rarr 5)((x^k - 5^k)/(x - 5)) = 500, then k is equal to

    Text Solution

    |

  13. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  14. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  15. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  16. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  17. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  18. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  19. Evaluate the following limits (if exists), where {,} denotes the fract...

    Text Solution

    |

  20. If x is a real number in [0, 1]. Then find the value of lim(m rarr inf...

    Text Solution

    |