Home
Class 11
MATHS
If g is the inverse of a function f and ...

If `g` is the inverse of `a` function `f `and `f(x)=1/(1+x^5)` , Then `g'(x)` i equal to :

A

`1/(1+{g(x)}^5`

B

`1+{g(x)}^5`

C

`1+x^5`

D

`5x^4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If g is the inverse of a function f and f'(x)=(1)/(1+x^(5)) , then g'(x) is equal to-

If g is the inverse of a function f and f ' ( x ) = 1 / (1 + x^ n , Then g ' ( x ) i equal to

If g (x) is the inverse of f (x) and f(x)=(1)/(1+x^(3)) , then find g(x) .

Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^3) . Then find g'(x) in terms of g(x).

If g(x) is the inverse function and f'(x) = sin x then prove that g'(x) = cosec [g(x)]

If f(x) and g(x) are two functions with g(x)=x−1/x and fog(x) =x^3−1/ x^1, then f'(x) is equal to

If g(x) is the inverse of f(x) an d f'(x) =(1)/(1+x^(3)) , show that g'(x) =1+[g(x)]^(3) .

If the inverse function of y=f(x) is x=g(y) and f'(x)=(1)/(1+x^(2)) , then prove that g'(x)=1+[g(x)]^(2) .

Find the inverse of the function f: [-1,1] to [-1,1],f(x) =x^(2) xx sgn (x).

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals _

PATHFINDER-LIMIT, CONTINUITY AND DIFFERENTIABILITY-QUESTION BANK
  1. Let f1:RrarrR,f2:[0,infty)rarrR,f3:RrarrRandf4:Rrarr[0,infty) be defin...

    Text Solution

    |

  2. lim(xrarr0)sin(picos^2x)/x^2 is equal to :

    Text Solution

    |

  3. If g is the inverse of a function f and f(x)=1/(1+x^5) , Then g'(x) i ...

    Text Solution

    |

  4. The function f(x)=tan{pi[x-pi/2]}/(2+[x^2] , where [x] denotes the gre...

    Text Solution

    |

  5. Let f(x) be a differentiable function and f'(4)=5. Then lim(xrarr2)(f...

    Text Solution

    |

  6. The value of lim(xrarr0)(int0^(x^2) cos(t^2)dt)/(xsinx) is

    Text Solution

    |

  7. If lim(xrarr0)(2asinx-sin2x)/tan^3x exists and is equal to 1, then the...

    Text Solution

    |

  8. The function f(x)=a sin |x| +be^|x| is differentiable at x=0 when

    Text Solution

    |

  9. let f(x)={( int0^x|1-t|dt, xgt1),(x-1/2, xle1):} then

    Text Solution

    |

  10. The number of points in (-infty,infty) , for which x^3-xsin x-cos x =0...

    Text Solution

    |

  11. lim(xrarr0)((1-cos2)(3+cos x))/(xtan 4x) is equal to

    Text Solution

    |

  12. The limit of xsin (e^(1//x)) as xrarr0

    Text Solution

    |

  13. Let f(x)={f(x={(x^3-3x+2, xlt2),(x^3-6x^2+9x+2, xge2):} Then

    Text Solution

    |

  14. The limit of sum(n=1)^1000(-1)^n x^n as xrarrinfty

    Text Solution

    |

  15. The limit of [1/x^2+(2013)^x/(e^x-1)-1/(e^x-1)] as xrarr0

    Text Solution

    |

  16. The limit of {1/xsqrt(1+x)-sqrt(1+1/x^2} as xrarr0

    Text Solution

    |

  17. If lim(xrarrinfty)((x^2+x+1)/(x+1)-ax-b)=4 ,then

    Text Solution

    |

  18. Let f(x)={(x^2|cos"pi/x|, x ne0),(0, x=0):}, x in R, then f is

    Text Solution

    |

  19. Let alpha(a) and beta(b) be the roots of the equation , (root(3)(1+a)...

    Text Solution

    |

  20. For every integer n, let an and bn be real numbers Let function f : R ...

    Text Solution

    |