Home
Class 11
MATHS
If x^(y)=y^(x) then show that dy/dx=(y(x...

If `x^(y)=y^(x)` then show that `dy/dx=(y(xlogy-y))/(x(ylogx-x))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If x^4y^5=(x+y)^9 . Show that (dy/dx)=(y/x)

If y = x/(x+4) then show that x (dy)/(dx) = y(1-y)

(dy)/(dx)=(y(x-y))/(x(x+y))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If Y = kx, then show that (dy)/(dx) = (y)/(x)

If x^3y^k=(x+y)^(3+k) , show that (dy/dx)=y/x

If y=x^(y) , show that dy/dx=y^(2)/(x(1-ylogx))