Home
Class 11
MATHS
In a Delta ABC, cos (A + B) + cos C =...

In a `Delta ABC`, cos (A + B) + cos C =

A

2 cos C

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(A + B) + \cos C \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Understand the Angles in Triangle**: In any triangle, the sum of the angles is \( 180^\circ \). Therefore, we can write: \[ A + B + C = 180^\circ \] 2. **Express \( A + B \)**: From the equation above, we can express \( A + B \) as: \[ A + B = 180^\circ - C \] 3. **Substitute into the Cosine Function**: We want to find \( \cos(A + B) + \cos C \). Substitute \( A + B \) into the cosine function: \[ \cos(A + B) = \cos(180^\circ - C) \] 4. **Use the Cosine Identity**: We know from trigonometric identities that: \[ \cos(180^\circ - \theta) = -\cos(\theta) \] Applying this identity, we get: \[ \cos(180^\circ - C) = -\cos C \] 5. **Combine the Results**: Now substitute this back into our expression: \[ \cos(A + B) + \cos C = -\cos C + \cos C \] 6. **Simplify**: The two \( \cos C \) terms cancel each other out: \[ -\cos C + \cos C = 0 \] ### Final Answer: Thus, the value of \( \cos(A + B) + \cos C \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - B |11 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A + tan B + tan C is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then the respective values of tan A, tan B and tanC are

In a Delta ABC, if cos A+cos C=4 sin^(2)((B)/(2)), then a,b,c are in

In a triangle ABC cos A = 7/8 , cos B = 11/16 .then , cos C is equal to

In a triangle ABC, cos A+cos B+cos C=

In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) is equal to

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then find any one angle.

In a Delta ABC, c cos^2 A/2+a cos^2C/2=(3b)/(2) then show a,b,c are in A.P

In a Delta ABC , 2 sinA cos B + 2 sin B cos C + 2 sin C cos A = sin A + sin B + sin C, then Delta ABC is (a) Isoceles (b) Right Angled (c) Acute (d) None of these