Home
Class 11
MATHS
Evaluate : lim(x to(pi)/(2))(tan 2 x)/( ...

Evaluate : `lim_(x to(pi)/(2))(tan 2 x)/( x - (pi)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{2}} \frac{\tan(2x)}{x - \frac{\pi}{2}}, \] we will follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = \frac{\pi}{2} \) into the function: \[ \tan(2x) = \tan(2 \cdot \frac{\pi}{2}) = \tan(\pi) = 0, \] and \[ x - \frac{\pi}{2} = \frac{\pi}{2} - \frac{\pi}{2} = 0. \] Thus, we have the form \( \frac{0}{0} \). **Hint:** When substituting the limit value results in \( \frac{0}{0} \), it indicates that we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. Here, let \( f(x) = \tan(2x) \) and \( g(x) = x - \frac{\pi}{2} \). ### Step 3: Differentiate the numerator and denominator Now, we differentiate \( f(x) \) and \( g(x) \): 1. **Differentiate \( f(x) = \tan(2x) \)**: \[ f'(x) = \sec^2(2x) \cdot 2 = 2 \sec^2(2x) \] 2. **Differentiate \( g(x) = x - \frac{\pi}{2} \)**: \[ g'(x) = 1 \] ### Step 4: Substitute into the limit Now we substitute these derivatives back into the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{f'(x)}{g'(x)} = \lim_{x \to \frac{\pi}{2}} \frac{2 \sec^2(2x)}{1} = 2 \sec^2(2 \cdot \frac{\pi}{2}) = 2 \sec^2(\pi). \] ### Step 5: Evaluate \( \sec^2(\pi) \) We know that: \[ \sec(\pi) = \frac{1}{\cos(\pi)} = \frac{1}{-1} = -1. \] Thus, \[ \sec^2(\pi) = (-1)^2 = 1. \] ### Step 6: Final result Now, substituting this back into our limit gives: \[ \lim_{x \to \frac{\pi}{2}} \frac{\tan(2x)}{x - \frac{\pi}{2}} = 2 \cdot 1 = 2. \] Therefore, the final answer is: \[ \boxed{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - B |11 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

Evaluate : lim_(x to pi//2) ( x tan x - (pi)/(2) sec x)

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

(lim)_(x->pi/2)(tan2x)/(x-pi/2)

Evaluate: (lim)_(x->pi/2)(cot x)/(pi/2-x)

Evaluate: (lim)_(x->pi/2)(pi/2-x)t a n x

Evaluate the following limits : Lim_(x to pi/4) (1- tan x)/(x - pi/4 )