Home
Class 11
MATHS
If f(x) =((sec x - 1)/( sec x + 1))^(1/2...

If `f(x) =((sec x - 1)/( sec x + 1))^(1/2)` , find `f'((4pi)/( 3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'\left(\frac{4\pi}{3}\right) \) for the function \( f(x) = \left(\frac{\sec x - 1}{\sec x + 1}\right)^{\frac{1}{2}} \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \left(\frac{\sec x - 1}{\sec x + 1}\right)^{\frac{1}{2}} \] Using the identity \( \sec x = \frac{1}{\cos x} \), we can rewrite \( f(x) \): \[ f(x) = \left(\frac{\frac{1}{\cos x} - 1}{\frac{1}{\cos x} + 1}\right)^{\frac{1}{2}} \] ### Step 2: Simplify the expression Now, we simplify the fraction: \[ f(x) = \left(\frac{\frac{1 - \cos x}{\cos x}}{\frac{1 + \cos x}{\cos x}}\right)^{\frac{1}{2}} = \left(\frac{1 - \cos x}{1 + \cos x}\right)^{\frac{1}{2}} \] ### Step 3: Rationalize the expression Next, we rationalize the expression: \[ f(x) = \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{\sqrt{1 - \cos x}}{\sqrt{1 + \cos x}} \] ### Step 4: Use trigonometric identities Using the identity \( 1 - \cos^2 x = \sin^2 x \), we can express \( \sqrt{1 - \cos x} \) as: \[ f(x) = \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 + \cos x}} = \frac{\sin x}{\sqrt{1 + \cos x}} \] ### Step 5: Differentiate the function Now we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{\sin x}{\sqrt{1 + \cos x}}\right) \] Using the quotient rule: \[ f'(x) = \frac{\sqrt{1 + \cos x} \cdot \cos x - \sin x \cdot \frac{-\sin x}{2\sqrt{1 + \cos x}}}{(1 + \cos x)} \] This simplifies to: \[ f'(x) = \frac{\cos x \sqrt{1 + \cos x} + \frac{\sin^2 x}{2\sqrt{1 + \cos x}}}{1 + \cos x} \] ### Step 6: Evaluate at \( x = \frac{4\pi}{3} \) Now we substitute \( x = \frac{4\pi}{3} \): \[ f'\left(\frac{4\pi}{3}\right) = \frac{\cos\left(\frac{4\pi}{3}\right) \sqrt{1 + \cos\left(\frac{4\pi}{3}\right)} + \frac{\sin^2\left(\frac{4\pi}{3}\right)}{2\sqrt{1 + \cos\left(\frac{4\pi}{3}\right)}}}{1 + \cos\left(\frac{4\pi}{3}\right)} \] Calculating \( \cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2} \) and \( \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2} \): \[ 1 + \cos\left(\frac{4\pi}{3}\right) = 1 - \frac{1}{2} = \frac{1}{2} \] Thus: \[ f'\left(\frac{4\pi}{3}\right) = \frac{-\frac{1}{2} \sqrt{\frac{1}{2}} + \frac{\left(-\frac{\sqrt{3}}{2}\right)^2}{2\sqrt{\frac{1}{2}}}}{\frac{1}{2}} \] Calculating \( \sin^2\left(\frac{4\pi}{3}\right) = \frac{3}{4} \): \[ f'\left(\frac{4\pi}{3}\right) = \frac{-\frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \frac{\frac{3}{4}}{2\cdot\frac{1}{\sqrt{2}}}}{\frac{1}{2}} = 2 \] ### Final Answer Thus, the value of \( f'\left(\frac{4\pi}{3}\right) \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - B |11 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

If f(x) = sqrt ((sec x -1)/(sec x + 1)) , find f'( pi /3)

intx((sec2x-1)/(sec2x+1))dx

If "f"("x")=sqrt((sec"x"-1)/(secx+1))" " find "f '"("x")dot Also find "f^,(pi/2)dot

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

Draw the graph of f(x)=sec^(-1)(sec x)

If f(x) =sin x +log_(e)|sec x + tanx|-2x for x in (-(pi)/(2),(pi)/(2)) then check the monotonicity of f(x)

If int e^(sec x)(sec x tan x f(x)+(sec x tan x + sec^(2) x))dx = e^(sec x)f(x) + C , then a possible choice of f(x) is