Home
Class 11
MATHS
If z(1) = 2 - i , z(2) = 1 + i , " find ...

If `z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| \] where \( z_1 = 2 - i \) and \( z_2 = 1 + i \). ### Step 1: Calculate \( z_1 + z_2 + 1 \) First, we need to find \( z_1 + z_2 + 1 \): \[ z_1 + z_2 = (2 - i) + (1 + i) = 2 + 1 + (-i + i) = 3 + 0i = 3 \] Now, adding 1: \[ z_1 + z_2 + 1 = 3 + 1 = 4 \] ### Step 2: Calculate \( z_1 - z_2 + 1 \) Next, we calculate \( z_1 - z_2 + 1 \): \[ z_1 - z_2 = (2 - i) - (1 + i) = 2 - 1 - i - i = 1 - 2i \] Now, adding 1: \[ z_1 - z_2 + 1 = (1 - 2i) + 1 = 2 - 2i \] ### Step 3: Substitute into the expression Now we substitute these results into the expression: \[ \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| = \left| \frac{4}{2 - 2i} \right| \] ### Step 4: Simplify the expression To simplify \( \frac{4}{2 - 2i} \), we can multiply the numerator and the denominator by the conjugate of the denominator: \[ \frac{4}{2 - 2i} \cdot \frac{2 + 2i}{2 + 2i} = \frac{4(2 + 2i)}{(2 - 2i)(2 + 2i)} \] Calculating the denominator: \[ (2 - 2i)(2 + 2i) = 2^2 - (2i)^2 = 4 - (-4) = 4 + 4 = 8 \] Now, the numerator: \[ 4(2 + 2i) = 8 + 8i \] So we have: \[ \frac{8 + 8i}{8} = 1 + i \] ### Step 5: Calculate the modulus Now we find the modulus: \[ \left| 1 + i \right| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Final Answer Thus, the final answer is: \[ \left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + 1} \right| = \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - B |11 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos

Similar Questions

Explore conceptually related problems

If z_(1) = 4 -I and z_(2) = - 3 + 7i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2)

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

if z_(1) =-1 + 3i and z_(2)= 2 + i then find 2(z_(1) +z_(2))

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

If Z_(1)=2 + 3i and z_(2) = -1 + 2i then find (i) z_(1) +z_(2) (ii) z_(1) -z_(2) (iii) z_(1).z_(2) (iv) z_(1)/z_(2)

If z_(1) = 6 + 9i and z_(2) = 5 + 2i then find z_(1)/z_(2)

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

If z_(1) = 2+ 3i and z_(2) = 5-3i " then " z_(1)z_(2) is

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|