Home
Class 11
MATHS
Differentiate w.r.t. 'x' from first pri...

Differentiate w.r.t. 'x' from first principles f (x) `= sqrt(4 - x)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( f(x) = \sqrt{4 - x} \) with respect to \( x \) from first principles, we will follow these steps: ### Step 1: Write the definition of the derivative The derivative of a function \( f(x) \) at a point \( x \) can be defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute \( f(x) \) into the definition Given \( f(x) = \sqrt{4 - x} \), we need to find \( f(x+h) \): \[ f(x+h) = \sqrt{4 - (x + h)} = \sqrt{4 - x - h} \] Now, substituting \( f(x) \) and \( f(x+h) \) into the derivative formula: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{4 - x - h} - \sqrt{4 - x}}{h} \] ### Step 3: Rationalize the numerator To simplify the expression, we will multiply the numerator and the denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{\left(\sqrt{4 - x - h} - \sqrt{4 - x}\right) \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{(4 - x - h) - (4 - x)}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] ### Step 4: Simplify the expression The numerator simplifies to: \[ (4 - x - h) - (4 - x) = -h \] Thus, we have: \[ f'(x) = \lim_{h \to 0} \frac{-h}{h \left(\sqrt{4 - x - h} + \sqrt{4 - x}\right)} \] Cancelling \( h \) from the numerator and denominator gives: \[ f'(x) = \lim_{h \to 0} \frac{-1}{\sqrt{4 - x - h} + \sqrt{4 - x}} \] ### Step 5: Evaluate the limit as \( h \to 0 \) As \( h \) approaches 0, \( \sqrt{4 - x - h} \) approaches \( \sqrt{4 - x} \): \[ f'(x) = \frac{-1}{\sqrt{4 - x} + \sqrt{4 - x}} = \frac{-1}{2\sqrt{4 - x}} \] ### Final Result Thus, the derivative of \( f(x) = \sqrt{4 - x} \) is: \[ f'(x) = \frac{-1}{2\sqrt{4 - x}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - B |11 Videos
  • MODEL TEST PAPER -11

    ICSE|Exercise Sections - C|10 Videos
  • MODEL TEST PAPER - 9

    ICSE|Exercise SECTION - C |9 Videos
  • MODEL TEST PAPER -12

    ICSE|Exercise Section - C |10 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x sin^4x

Differentiate w.r.t x e^(5x)

Differentiate w.r.t x tan (x^2)

Differentiate w.r.t x y = 8x^(8)

Differentiation of x^2 w.r.t. x is

Differentiate w.r.t x sec (sec x)

Differentiate w.r.t x e^("sin x")

Differentiate w.r.t y = x^(-2)

Differentiate w.r.t y = x^(10)

Differentiate function w.r.t 'x',using first principal xcosx