Home
Class 12
MATHS
If e^x+e^y=e^(x+y) , prove that (dy)/(dx...

If `e^x+e^y=e^(x+y)` , prove that `(dy)/(dx)+e^(y-x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^x+e^y=e^(x+y) then prove that dy/dx =- e^(y-x)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If e^x+e^y=e^(x+y) , show that (dy/dx)=e^(x-y)((e^y-1)/(1-e^x))

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If e^(y)(x+1)=1, show that (dy)/(dx)=-e^(y)