Home
Class 12
MATHS
let A be the greatest value of the funct...

let A be the greatest value of the function `f(x)=log _(x) [x],` (where `[.]` denotes gratest integer function) and B be the least value of the function `g (x) = |sin x | +|cos x| ,` then :

A

`A gtB`

B

`A lt B`

C

`A =B`

D

`2A+ B=4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( A \) and \( B \) as defined in the question. ### Step 1: Determine \( A \) for the function \( f(x) = \log_{\lfloor x \rfloor}(x) \) 1. **Understanding the function**: The function \( f(x) = \log_{\lfloor x \rfloor}(x) \) means we take the logarithm of \( x \) with the base being the greatest integer less than or equal to \( x \), denoted by \( \lfloor x \rfloor \). 2. **Range of \( \lfloor x \rfloor \)**: For \( x \) in the interval \( [n, n+1) \) where \( n \) is a positive integer, \( \lfloor x \rfloor = n \). 3. **Evaluating \( f(x) \)**: In this interval, we have: \[ f(x) = \log_{n}(x) \] This can be rewritten using the change of base formula: \[ f(x) = \frac{\log(x)}{\log(n)} \] 4. **Finding the maximum**: As \( x \) approaches \( n+1 \), \( f(x) \) approaches: \[ f(n+1) = \log_{n}(n+1) = \frac{\log(n+1)}{\log(n)} \] We need to find the maximum value of \( \frac{\log(n+1)}{\log(n)} \) for positive integers \( n \). 5. **Behavior of the function**: As \( n \) increases, \( \frac{\log(n+1)}{\log(n)} \) approaches 1. Therefore, the maximum value of \( f(x) \) approaches 1. Thus, \( A = 1 \). ### Step 2: Determine \( B \) for the function \( g(x) = |\sin x| + |\cos x| \) 1. **Understanding the function**: The function \( g(x) = |\sin x| + |\cos x| \) represents the sum of the absolute values of sine and cosine functions. 2. **Finding the minimum value**: The minimum value occurs when both \( |\sin x| \) and \( |\cos x| \) are at their lowest. The minimum value of either function is 0. 3. **Analyzing the function**: The values of \( |\sin x| \) and \( |\cos x| \) can be analyzed using the identity: \[ |\sin x|^2 + |\cos x|^2 = 1 \] The minimum occurs when both are equal, which happens at \( x = \frac{\pi}{4} + k\frac{\pi}{2} \) for integers \( k \). 4. **Calculating the minimum**: At \( x = \frac{\pi}{4} \): \[ g\left(\frac{\pi}{4}\right) = |\sin(\frac{\pi}{4})| + |\cos(\frac{\pi}{4})| = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \] The minimum value of \( g(x) \) is \( 1 \) when \( x = 0, \frac{\pi}{2}, \pi, \ldots \). Thus, \( B = 1 \). ### Conclusion Now we have: - \( A = 1 \) - \( B = 1 \) Therefore, \( A = B \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Find range of the function f(x)=log_(2)[3x-[x+[x+[x]]]] (where [.] is greatest integer function)

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. let A be the greatest value of the function f(x)=log (x) [x], (where [...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |