Home
Class 12
MATHS
Let f (x), g(x) be two real valued funct...

Let `f (x), g(x)` be two real valued functions then the function `h(x) =2 max {f(x)-g(x), 0}` is equal to :

A

`f (x) -g(x) -|g(x)-f(x)|`

B

`f(x) +g(x) -|g(x)- f(x)|`

C

`f(x) -g (x)+ |g(x) -f(x)|`

D

`f (x)+g (x)+ |g(x)- f(x)|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( h(x) = 2 \max \{ f(x) - g(x), 0 \} \). ### Step-by-Step Solution: 1. **Understanding the max function**: The expression \( \max \{ f(x) - g(x), 0 \} \) means we take the larger value between \( f(x) - g(x) \) and \( 0 \). This can be interpreted as: - If \( f(x) - g(x) \geq 0 \), then \( \max \{ f(x) - g(x), 0 \} = f(x) - g(x) \). - If \( f(x) - g(x) < 0 \), then \( \max \{ f(x) - g(x), 0 \} = 0 \). 2. **Expressing \( h(x) \)**: Based on the definition of the max function, we can rewrite \( h(x) \) in two cases: - Case 1: If \( f(x) - g(x) \geq 0 \): \[ h(x) = 2 \cdot (f(x) - g(x)) \] - Case 2: If \( f(x) - g(x) < 0 \): \[ h(x) = 2 \cdot 0 = 0 \] 3. **Combining the cases**: We can summarize the function \( h(x) \) as: \[ h(x) = \begin{cases} 2(f(x) - g(x)) & \text{if } f(x) - g(x) \geq 0 \\ 0 & \text{if } f(x) - g(x) < 0 \end{cases} \] 4. **Final expression**: We can express \( h(x) \) in a more compact form: \[ h(x) = 2 \max \{ f(x) - g(x), 0 \} \] This indicates that \( h(x) \) will be twice the positive difference between \( f(x) \) and \( g(x) \) when \( f(x) \) is greater than or equal to \( g(x) \), and zero otherwise. ### Conclusion: Thus, the function \( h(x) \) can be expressed as: \[ h(x) = 2 \max \{ f(x) - g(x), 0 \} \] This is the final answer.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =x and g(x)=|x| be two real-valued functions, check whether the functions are one -one.

Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |f(x)| + |g(x)| Let f(x) = x-3 and g(x) = 4-x, then The number of solution(s) of the above inequality when x ge 4 is

Let f(x) and g(x) be two real valued functions then |f(x) - g(x)| le |f(x)| + |g(x)| Let f(x) = x-3 and g(x) = 4-x, then The number of solution(s) of the above inequality for x lt 3 is

Suppose f, g, and h be three real valued function defined on R. Let f(x) = 2x + |x|, g(x) = (1)/(3)(2x-|x|) and h(x) = f(g(x)) The domain of definition of the function l (x) = sin^(-1) ( f(x) - g (x) ) is equal to

If both f(x) & g(x) are differentiable functions at x=x_0 then the function defiend as h(x) =Maximum {f(x), g(x)}

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Let f(x) = 3x + 8 and g(x) = x^(2) be two real functions. Find (f+g) (x)

Let f(x) and g(x) be two equal real function such that f(x)=(x)/(|x|) g(x), x ne 0 If g(0)=g'(0)=0 and f(x) is continuous at x=0, then f'(0) is

Let f and g be two real values functions defined by f ( x ) = x + 1 and g ( x ) = 2 x − 3 . Find 1) f + g , 2) f − g , 3) f / g

If f(x)=sinx and g(x)=2x be two real functions, then describe gof and fogdot Are these equal functions?

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f (x), g(x) be two real valued functions then the function h(x) =2...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |