Home
Class 12
MATHS
Find the number of values of f(x)=[x/15]...

Find the number of values of `f(x)=[x/15][-15 /x]` can take where `x in (0,90)` where [.] =GIF

A

5

B

6

C

7

D

Infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of values that the function \( f(x) = \left[\frac{x}{15}\right] \left[-\frac{15}{x}\right] \) can take for \( x \in (0, 90) \), we will analyze the function step by step. ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) \) is defined as the product of two greatest integer functions (GIFs): - \( \left[\frac{x}{15}\right] \) is the greatest integer less than or equal to \( \frac{x}{15} \). - \( \left[-\frac{15}{x}\right] \) is the greatest integer less than or equal to \( -\frac{15}{x} \). 2. **Finding the Range of \( x \)**: We will consider intervals of \( x \) from \( 0 \) to \( 90 \) and analyze the function in segments. 3. **Interval \( (0, 15) \)**: - For \( x \in (0, 15) \), \( \frac{x}{15} \) ranges from \( 0 \) to \( 1 \). - Thus, \( \left[\frac{x}{15}\right] = 0 \). - \( -\frac{15}{x} \) ranges from \( -\infty \) to \( -1 \), so \( \left[-\frac{15}{x}\right] \) will be \( -1, -2, -3, \ldots \). - Therefore, \( f(x) = 0 \cdot \text{(any integer)} = 0 \). 4. **Interval \( [15, 30) \)**: - For \( x \in [15, 30) \), \( \frac{x}{15} \) ranges from \( 1 \) to \( 2 \). - Thus, \( \left[\frac{x}{15}\right] = 1 \). - \( -\frac{15}{x} \) ranges from \( -1 \) to \( -0.5 \), so \( \left[-\frac{15}{x}\right] = -1 \). - Therefore, \( f(x) = 1 \cdot (-1) = -1 \). 5. **Interval \( [30, 45) \)**: - For \( x \in [30, 45) \), \( \frac{x}{15} \) ranges from \( 2 \) to \( 3 \). - Thus, \( \left[\frac{x}{15}\right] = 2 \). - \( -\frac{15}{x} \) ranges from \( -0.5 \) to \( -0.333 \), so \( \left[-\frac{15}{x}\right] = -1 \). - Therefore, \( f(x) = 2 \cdot (-1) = -2 \). 6. **Interval \( [45, 60) \)**: - For \( x \in [45, 60) \), \( \frac{x}{15} \) ranges from \( 3 \) to \( 4 \). - Thus, \( \left[\frac{x}{15}\right] = 3 \). - \( -\frac{15}{x} \) ranges from \( -0.333 \) to \( -0.25 \), so \( \left[-\frac{15}{x}\right] = -1 \). - Therefore, \( f(x) = 3 \cdot (-1) = -3 \). 7. **Interval \( [60, 75) \)**: - For \( x \in [60, 75) \), \( \frac{x}{15} \) ranges from \( 4 \) to \( 5 \). - Thus, \( \left[\frac{x}{15}\right] = 4 \). - \( -\frac{15}{x} \) ranges from \( -0.25 \) to \( -0.2 \), so \( \left[-\frac{15}{x}\right] = -1 \). - Therefore, \( f(x) = 4 \cdot (-1) = -4 \). 8. **Interval \( [75, 90) \)**: - For \( x \in [75, 90) \), \( \frac{x}{15} \) ranges from \( 5 \) to \( 6 \). - Thus, \( \left[\frac{x}{15}\right] = 5 \). - \( -\frac{15}{x} \) ranges from \( -0.2 \) to \( -0.1667 \), so \( \left[-\frac{15}{x}\right] = -1 \). - Therefore, \( f(x) = 5 \cdot (-1) = -5 \). 9. **Summary of Values**: The possible values of \( f(x) \) in the intervals are: - From \( (0, 15) \): \( 0 \) - From \( [15, 30) \): \( -1 \) - From \( [30, 45) \): \( -2 \) - From \( [45, 60) \): \( -3 \) - From \( [60, 75) \): \( -4 \) - From \( [75, 90) \): \( -5 \) 10. **Counting Unique Values**: The unique values that \( f(x) \) can take are \( 0, -1, -2, -3, -4, -5 \). Thus, there are a total of **6 unique values**. ### Final Answer: The number of values that \( f(x) \) can take is **6**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Find the number of points where f(x)=[x/3],x in [0, 30], is discontinuous (where [.] represents greatest integer function).

Find maximum and minimum values of f(x)=sinx+1/2cos2x , where 0

The number of points at which f(x)=[x]+|1-x|, -1lt x lt3 is not differentiable is (where [.] denotes G.I.F)

Find the least value of f(x)=a x+b/x , where a >0,\ \ b >0 and x >0 .

Find number of roots of f(x) where f(x) = 1/(x+1)^3 -3x + sin x

Number of values of x in [0, pi] where f (x) = [4 sin x-7] is non derivable is

The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix) is discontinous is (where [.] denotes greatest integer function)

Find the value of x and y from 7x-15y-2=0 x+2y-3=0

Find the value of x and y from 7x-15y-2=0 x+2y-3=0

The value of (f(1.5) - f(1))/(0.25) , where f(x) = x^(2) , is

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Find the number of values of f(x)=[x/15][-15 /x] can take where x in...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |