Home
Class 12
MATHS
lf | f(x) + 6-x^2| =| f(x)|+|4-x^2| + 2,...

lf `| f(x) + 6-x^2| =| f(x)|+|4-x^2| + 2`, then f(x) is necessarily non-negaive for

A

`x in [-2,2]`

B

`x n (-oo, -2) uu (2,oo)`

C

`x in [-sqrt6, sqrt6]`

D

`x in [-5, -2] uu [2,5]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2 \) and show that \( f(x) \) is necessarily non-negative for certain values of \( x \), we can follow these steps: ### Step 1: Analyze the given equation We start with the equation: \[ |f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2 \] ### Step 2: Consider the cases for the absolute values The equation involves absolute values, so we need to consider the cases based on the signs of the expressions inside the absolute values. ### Step 3: Identify the critical points The critical points that affect the absolute values are when \( f(x) + 6 - x^2 = 0 \) and \( 4 - x^2 = 0 \). - From \( 4 - x^2 = 0 \), we find \( x^2 = 4 \) or \( x = \pm 2 \). ### Step 4: Determine the intervals The intervals to consider based on the critical points are: - \( (-\infty, -2) \) - \( [-2, 2] \) - \( (2, \infty) \) ### Step 5: Analyze the interval \( [-2, 2] \) In the interval \( [-2, 2] \): - \( 4 - x^2 \geq 0 \) (since \( x^2 \leq 4 \)) - Therefore, \( |4 - x^2| = 4 - x^2 \). ### Step 6: Substitute into the equation Substituting into the equation, we have: \[ |f(x) + 6 - x^2| = |f(x)| + (4 - x^2) + 2 \] This simplifies to: \[ |f(x) + 6 - x^2| = |f(x)| + 6 - x^2 \] ### Step 7: Analyze the cases for \( f(x) \) 1. **Case 1**: If \( f(x) + 6 - x^2 \geq 0 \): \[ f(x) + 6 - x^2 = f(x) + 6 - x^2 \] This holds true for all \( f(x) \). 2. **Case 2**: If \( f(x) + 6 - x^2 < 0 \): \[ -(f(x) + 6 - x^2) = |f(x)| + 6 - x^2 \] This leads to: \[ -f(x) - 6 + x^2 = |f(x)| + 6 - x^2 \] Rearranging gives: \[ -f(x) = |f(x)| + 12 - 2x^2 \] Since \( |f(x)| \geq 0 \), this implies \( -f(x) \geq 12 - 2x^2 \). ### Step 8: Determine the non-negativity of \( f(x) \) For \( f(x) \) to be non-negative, we need: \[ f(x) \geq 0 \quad \text{and} \quad 12 - 2x^2 \leq 0 \] This gives: \[ x^2 \geq 6 \quad \Rightarrow \quad |x| \geq \sqrt{6} \] However, within the interval \( [-2, 2] \), \( x^2 \) cannot exceed 4. Thus, \( f(x) \) must be non-negative in the interval \( [-2, 2] \). ### Conclusion Thus, we conclude that \( f(x) \) is necessarily non-negative for \( x \) in the interval \( [-2, 2] \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x)=|x^2-5x+6|, then f'(x) equals

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

If f(x)+2f(1-x)=x^2+2AA x in R, then f(x) given as

If 2f(x^2)+3f(1/x^2)=x^2-1 , then f(x^2) is

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

If f(x+2)=(x+3)^(2)-2x , then f(x)=

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f'(x)=x/2 + 2/x and f(1)=5/4 , then find f(x) .

Let f"'(x)>=0 ,f'(x)> 0, f(0) =3 & f(x) is defined in [-2, 2].If f(x) is non-negative, then

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. lf | f(x) + 6-x^2| =| f(x)|+|4-x^2| + 2, then f(x) is necessarily non-...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |