Home
Class 12
MATHS
The domain of f(x) is (0,1) .Then the do...

The domain of `f(x) is (0,1)` .Then the domain of `(f(e^x)+f(1n|x|)` is `(a) (-1, e)` (b) `(1, e)` (c) `(-e ,-1)` (d)`(-e ,1)`

A

`((1)/(e), 1)`

B

`(-e, 1)`

C

`(-1,-(1)/(e))`

D

`(-e, -1)uu(1,e)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(e^x) + f(\ln|x|) \), given that the domain of \( f(x) \) is \( (0, 1) \), we need to analyze the conditions under which both \( e^x \) and \( \ln|x| \) fall within the interval \( (0, 1) \). ### Step 1: Analyze \( f(e^x) \) The function \( f(e^x) \) is defined when \( e^x \) is in the interval \( (0, 1) \). - The expression \( e^x < 1 \) implies: \[ x < 0 \] - Since \( e^x \) is always positive, the condition \( e^x > 0 \) is always satisfied for all real \( x \). Thus, the domain for \( f(e^x) \) is: \[ (-\infty, 0) \] ### Step 2: Analyze \( f(\ln|x|) \) Next, we consider \( f(\ln|x|) \), which is defined when \( \ln|x| \) is in the interval \( (0, 1) \). - The condition \( 0 < \ln|x| < 1 \) can be split into two inequalities: 1. \( \ln|x| > 0 \) implies \( |x| > 1 \) (or \( x < -1 \) or \( x > 1 \)). 2. \( \ln|x| < 1 \) implies \( |x| < e \) (or \( -e < x < e \)). Combining these inequalities, we find: - For \( x < -1 \): \( |x| > 1 \) and \( |x| < e \) gives \( -e < x < -1 \). - For \( x > 1 \): \( |x| > 1 \) and \( |x| < e \) gives \( 1 < x < e \). Thus, the domain for \( f(\ln|x|) \) is: \[ (-e, -1) \cup (1, e) \] ### Step 3: Combine the Domains Now, we need to find the intersection of the domains from steps 1 and 2: 1. Domain of \( f(e^x) \): \( (-\infty, 0) \) 2. Domain of \( f(\ln|x|) \): \( (-e, -1) \cup (1, e) \) The intersection with \( (-\infty, 0) \) gives: - From \( (-e, -1) \), we have \( (-e, -1) \). - The interval \( (1, e) \) does not intersect with \( (-\infty, 0) \). Thus, the combined domain is: \[ (-e, -1) \] ### Conclusion The domain of \( f(e^x) + f(\ln|x|) \) is \( (-e, -1) \). ### Final Answer The correct option is (c) \( (-e, -1) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is a. (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (a)(-1, e) (b). (1, e) (c).(-e ,-1) (d) (-e ,1)

The domain of f(x) is, if e^(x)+e^(f(x))=e

If f(x)=e^(1-x) then f(x) is

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

If e^(x)+e^(f(x))=e , then the domain of the function f is

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-constant, and differentiable function such that f^(prime)(x)<2f(x)a n df(1/2)=1 . Then the value of int_(1/2)^1f(x)dx lies in the interval (a) (2e-1,2e) (b) (3-1,2e-1) (c) ((e-1)/2,e-1) (d) (0,(e-1)/2)

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The domain of f(x) is (0,1) .Then the domain of (f(e^x)+f(1n|x|) is (a...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |