Home
Class 12
MATHS
The function f (x)={((x ^(2n)))/((x ^(2n...

The function `f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^(-1/x))/(e ^(1/x)+e ^(-(1)/(x))))x ne0 n in N` is:

A

Odd function

B

Even function

C

Neither odd nor even function

D

Constant function

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \[ f(x) = \frac{x^{2n}}{(x^{2n} \cdot \text{sgn}(x))^{2n+1}} \cdot \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] is an even or odd function, we will follow these steps: ### Step 1: Understand the Definitions - A function \( f(x) \) is **even** if \( f(-x) = f(x) \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \). ### Step 2: Find \( f(-x) \) Substituting \(-x\) into the function: \[ f(-x) = \frac{(-x)^{2n}}{((-x)^{2n} \cdot \text{sgn}(-x))^{2n+1}} \cdot \frac{e^{1/(-x)} - e^{-1/(-x)}}{e^{1/(-x)} + e^{-1/(-x)}} \] ### Step 3: Simplify \( f(-x) \) 1. Since \( (-x)^{2n} = x^{2n} \) (even power), we have: \[ f(-x) = \frac{x^{2n}}{((-x)^{2n} \cdot (-1))^{2n+1}} \cdot \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} \] 2. The signum function \( \text{sgn}(-x) = -1 \) when \( x < 0 \), thus: \[ f(-x) = \frac{x^{2n}}{(x^{2n} \cdot (-1))^{2n+1}} \cdot \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} \] 3. The denominator becomes: \[ (-x^{2n})^{2n+1} = -x^{2n(2n+1)} \quad \text{(odd power)} \] 4. Therefore: \[ f(-x) = \frac{x^{2n}}{-x^{2n(2n+1)}} \cdot \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} = -\frac{x^{2n}}{x^{2n(2n+1)}} \cdot \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} \] ### Step 4: Further Simplification Now, simplify \( \frac{e^{-1/x} - e^{1/x}}{e^{-1/x} + e^{1/x}} \): - This can be rewritten as: \[ -\frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} \] ### Step 5: Combine Results Thus, we have: \[ f(-x) = -\frac{x^{2n}}{x^{2n(2n+1)}} \cdot \left(-\frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}}\right) \] ### Step 6: Conclusion Since \( f(-x) = -f(x) \), we conclude that the function \( f(x) \) is an **odd function**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xtooo) ((2^(x^(n)))e^((1)/(x))-(3^(x^(n)))e^((1)/(x)))/(x^(n)) (where n in N ) is

If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):} , then at x = 0 f(x) is

The primitive of the function f(x)=(1-1/(x^2))a^(x+1/x)\ ,\ a >0 is (a) (a^(x+1/x))/((log)_e a) (b) (log)_e adota^(x+1/x) (c) (a^(x+1/x))/x(log)_e a (d) x(a^(x+1/x))/((log)_e a)

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

Statement.1 : The function f (x) =lim _(xtooo) (log _(e)(1+x) -x ^(2n) sin (2x))/(1+ x ^(2n)) is discontinuous at x=1 Statement.2: L.H.L. =R.H.L.ne f (1).

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The function f (x)={((x ^(2n)))/((x ^(2n) sgn x)^(2n+1))((e ^(1/x)-e ^...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |