Home
Class 12
MATHS
f(1)=1 and f(n)=2sum(r=1)^(n-1) f (r). T...

`f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r)`. Then `sum_(n=1)^mf(n)` is equal to
(A)`3^m-1`
(B)`3^m`
(C)`3^(m-1)`
(D)none of these

A

3 ^(m) -1

B

`3 ^(m)`

C

`3 ^(m-1)`

D

`none of these`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(n) \) based on the given recurrence relation and then compute the sum \( \sum_{n=1}^{m} f(n) \). ### Step 1: Calculate \( f(2) \) Given: - \( f(1) = 1 \) - \( f(n) = 2 \sum_{r=1}^{n-1} f(r) \) For \( n = 2 \): \[ f(2) = 2 \sum_{r=1}^{1} f(r) = 2 f(1) = 2 \times 1 = 2 \] ### Step 2: Calculate \( f(3) \) For \( n = 3 \): \[ f(3) = 2 \sum_{r=1}^{2} f(r) = 2 (f(1) + f(2)) = 2 (1 + 2) = 2 \times 3 = 6 \] ### Step 3: Calculate \( f(4) \) For \( n = 4 \): \[ f(4) = 2 \sum_{r=1}^{3} f(r) = 2 (f(1) + f(2) + f(3)) = 2 (1 + 2 + 6) = 2 \times 9 = 18 \] ### Step 4: Identify a pattern From our calculations: - \( f(1) = 1 = 2 \cdot 3^0 \) - \( f(2) = 2 = 2 \cdot 3^0 \) - \( f(3) = 6 = 2 \cdot 3^1 \) - \( f(4) = 18 = 2 \cdot 3^2 \) We can see a pattern forming: \[ f(n) = 2 \cdot 3^{n-2} \quad \text{for } n \geq 2 \] ### Step 5: General formula for \( f(n) \) Thus, we can write: \[ f(n) = \begin{cases} 1 & \text{if } n = 1 \\ 2 \cdot 3^{n-2} & \text{if } n \geq 2 \end{cases} \] ### Step 6: Calculate \( \sum_{n=1}^{m} f(n) \) Now we need to compute: \[ \sum_{n=1}^{m} f(n) = f(1) + \sum_{n=2}^{m} f(n) \] \[ = 1 + \sum_{n=2}^{m} 2 \cdot 3^{n-2} \] ### Step 7: Simplify the summation The summation \( \sum_{n=2}^{m} 2 \cdot 3^{n-2} \) can be rewritten: \[ = 2 \sum_{k=0}^{m-2} 3^k \quad \text{(where \( k = n-2 \))} \] This is a geometric series with: - First term \( a = 1 \) (when \( k = 0 \)) - Common ratio \( r = 3 \) - Number of terms \( m-1 \) The sum of a geometric series is given by: \[ S = \frac{a(r^n - 1)}{r - 1} \] Substituting the values: \[ S = \frac{1(3^{m-1} - 1)}{3 - 1} = \frac{3^{m-1} - 1}{2} \] Thus, \[ \sum_{n=2}^{m} f(n) = 2 \cdot \frac{3^{m-1} - 1}{2} = 3^{m-1} - 1 \] ### Final Calculation Now, substituting back: \[ \sum_{n=1}^{m} f(n) = 1 + (3^{m-1} - 1) = 3^{m-1} \] ### Conclusion The final answer is: \[ \sum_{n=1}^{m} f(n) = 3^{m-1} \] ### Answer (C) \( 3^{m-1} \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(r=1)^n r (n-r +1) is equal to :

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If sum_(r=1)^n I(r)=(3^n -1) , then sum_(r=1)^n 1/(I(r)) is equal to :

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Let a= 1/(n!) + sum_(r=1)^(n-1) r/((r+1)!), b= 1/(m!)+sum_(r=1)^(m-1) r/((r+1)!)then a+b= (A) 0 (B) 1 (C) 2 (D) none of these

""^(m)C_(r+1)+ sum_(k=m)^(n)""^(k)C_(r) is equal to :

If sum_(r=1)^n r=55 , F i nd sum_(r=1)^n r^3dot

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

If S_(r)= sum_(r=1)^(n)T_(1)=n(n+1)(n+2)(n+3) then sum_(r=1)^(10) 1/(T_(r)) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. f(1)=1 and f(n)=2sum(r=1)^(n-1) f (r). Then sum(n=1)^mf(n) is equal to...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |