Home
Class 12
MATHS
The domain of function f (x) = log ([x+(...

The domain of function `f (x) = log _([x+(1)/(2)])(2x ^(2) + x-1), ` where `[.]` denotes the greatest integer function is :

A

`[(3)/(2), oo)`

B

`(2,oo)`

C

`(-(1)/(2), oo)-{(1)/(2)}`

D

`((1)/(2), 1) uu (1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log_{[x + \frac{1}{2}]}(2x^2 + x - 1) \), where \([.]\) denotes the greatest integer function, we need to ensure that both the logarithmic function is defined and valid. This requires two conditions to be satisfied: 1. The argument of the logarithm must be positive: \( 2x^2 + x - 1 > 0 \). 2. The base of the logarithm must be positive and not equal to 1: \( [x + \frac{1}{2}] > 0 \) and \( [x + \frac{1}{2}] \neq 1 \). ### Step 1: Solve \( 2x^2 + x - 1 > 0 \) First, we will factor the quadratic expression \( 2x^2 + x - 1 \). To factor, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 2, b = 1, c = -1 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \cdot 2 \cdot (-1) = 1 + 8 = 9 \] Now substituting back into the quadratic formula: \[ x = \frac{-1 \pm 3}{4} \] This gives us two roots: \[ x_1 = \frac{2}{4} = \frac{1}{2}, \quad x_2 = \frac{-4}{4} = -1 \] Now we can factor \( 2x^2 + x - 1 \): \[ 2x^2 + x - 1 = 2(x + 1)(x - \frac{1}{2}) \] To find where this expression is greater than zero, we analyze the sign of the product \( 2(x + 1)(x - \frac{1}{2}) > 0 \). The critical points are \( x = -1 \) and \( x = \frac{1}{2} \). - For \( x < -1 \): Both factors are negative, so the product is positive. - For \( -1 < x < \frac{1}{2} \): One factor is negative and the other is positive, so the product is negative. - For \( x > \frac{1}{2} \): Both factors are positive, so the product is positive. Thus, the solution for \( 2x^2 + x - 1 > 0 \) is: \[ x \in (-\infty, -1) \cup \left(\frac{1}{2}, \infty\right) \] ### Step 2: Solve \( [x + \frac{1}{2}] > 0 \) The greatest integer function \([x + \frac{1}{2}]\) is positive when: \[ x + \frac{1}{2} \geq 1 \implies x \geq \frac{1}{2} \] Thus, \([x + \frac{1}{2}] > 0\) gives us: \[ x \geq \frac{1}{2} \] ### Step 3: Solve \( [x + \frac{1}{2}] \neq 1 \) Next, we need to ensure that \([x + \frac{1}{2}] \neq 1\): \[ 1 \leq x + \frac{1}{2} < 2 \implies \frac{1}{2} \leq x < \frac{3}{2} \] This means: \[ [x + \frac{1}{2}] = 1 \text{ for } x \in \left[\frac{1}{2}, \frac{3}{2}\right) \] ### Step 4: Combine Conditions Now we combine the conditions we have: 1. From \( 2x^2 + x - 1 > 0 \): \( x \in (-\infty, -1) \cup \left(\frac{1}{2}, \infty\right) \) 2. From \( [x + \frac{1}{2}] > 0 \): \( x \geq \frac{1}{2} \) 3. From \( [x + \frac{1}{2}] \neq 1 \): \( x \notin \left[\frac{1}{2}, \frac{3}{2}\right) \) The valid intervals are: - From \( \left(\frac{1}{2}, \infty\right) \) excluding \( \left[\frac{1}{2}, \frac{3}{2}\right) \), which gives us \( x \in \left[\frac{3}{2}, \infty\right) \). ### Final Domain Thus, the domain of the function \( f(x) \) is: \[ \boxed{\left[\frac{3}{2}, \infty\right)} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(log_(4)(5-[x-1]-[x]^(2)))/(x^(2)+x-2) is (where [x] denotes greatest integer function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The domain of the function f(x)=log_(3)log_(1//3)(x^(2)+10x+25)+(1)/([x]+5) (where [.] denotes the greatest integer function) is

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Find the domain and range of the following function: f(x)=sqrt(log_(1//2)log_(2)[x^(2)+4x+5]) where [.] denotes the greatest integer function

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. The domain of function f (x) = log ([x+(1)/(2)])(2x ^(2) + x-1), whe...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |