Home
Class 12
MATHS
Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/...

Let `f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f _(1) (x)=f (x), f_(n) (x)=f (f _(n-1) (x)))` for ` pige 2, n in N,` then `f _(2008) (x)+ f _(2009) (x)=`

A

`(2x ^(2) +5)/(2x-3)`

B

`(x^(2) +5)/(2x-3)`

C

`(2x ^(2) -5)/(2x-3)`

D

`(x ^(2) -5)/(2x-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f_{2008}(x) + f_{2009}(x) \) where the function \( f(x) \) is defined as: \[ f(x) = \frac{3x + 5}{2x - 3} \] We also have the definitions: - \( f_1(x) = f(x) \) - \( f_n(x) = f(f_{n-1}(x)) \) for \( n \geq 2 \) ### Step 1: Calculate \( f(f(x)) \) We start by calculating \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{3x + 5}{2x - 3}\right) \] Substituting \( x \) in \( f(x) \): \[ f\left(\frac{3x + 5}{2x - 3}\right) = \frac{3\left(\frac{3x + 5}{2x - 3}\right) + 5}{2\left(\frac{3x + 5}{2x - 3}\right) - 3} \] Calculating the numerator: \[ 3\left(\frac{3x + 5}{2x - 3}\right) + 5 = \frac{9x + 15 + 10x - 15}{2x - 3} = \frac{19x}{2x - 3} \] Calculating the denominator: \[ 2\left(\frac{3x + 5}{2x - 3}\right) - 3 = \frac{6x + 10 - 6x + 9}{2x - 3} = \frac{19}{2x - 3} \] Thus, we have: \[ f(f(x)) = \frac{19x}{19} = x \] ### Step 2: Identify the pattern From the calculations above, we can observe: - \( f_1(x) = f(x) \) - \( f_2(x) = f(f(x)) = x \) Continuing this pattern: - \( f_3(x) = f(f_2(x)) = f(x) \) - \( f_4(x) = f(f_3(x)) = f(f(x)) = x \) This indicates that: - \( f_{2n}(x) = x \) for even \( n \) - \( f_{2n+1}(x) = f(x) \) for odd \( n \) ### Step 3: Calculate \( f_{2008}(x) + f_{2009}(x) \) Since \( 2008 \) is even: \[ f_{2008}(x) = x \] And since \( 2009 \) is odd: \[ f_{2009}(x) = f(x) = \frac{3x + 5}{2x - 3} \] Now we can find: \[ f_{2008}(x) + f_{2009}(x) = x + \frac{3x + 5}{2x - 3} \] ### Step 4: Combine the expressions To combine these two expressions, we need a common denominator: \[ f_{2008}(x) + f_{2009}(x) = \frac{x(2x - 3)}{2x - 3} + \frac{3x + 5}{2x - 3} \] This simplifies to: \[ = \frac{2x^2 - 3x + 3x + 5}{2x - 3} = \frac{2x^2 + 5}{2x - 3} \] ### Final Answer Thus, the final result is: \[ f_{2008}(x) + f_{2009}(x) = \frac{2x^2 + 5}{2x - 3} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

Let f: R-{3/5}->R be defined by f(x)=(3x+2)/(5x-3) . Then

Let f : R to and f (x) = (x (x^(4) + 1) (x+1) +x ^(4)+2)/(x^(2) +x+1), then f (x) is :

If f: R^+ to R , f(x) + 3x f(1/x)= 2(x+1),t h e n find f(x)

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x) = x - [x] , x in R then f(1/2) is

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

Let g(x) =f(x)-2{f(x)}^2+9{f(x)}^3 for all x in R Then

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

Let f(x)=(x^(2)-2x+1)/(x+3),f i n d x: (i) f(x) gt 0 (ii) f(x) lt 0

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f :R -{(3)/(2)}to R, f (x) = (3x+5)/(2x-3).Let f (1) (x)=f (x), f(...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |