Home
Class 12
MATHS
Let f (x) be defined as f (x) ={{:(|x...

Let f (x) be defined as
`f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):}`
The range of function `g (x)= sin (7 (f (x))` is :

A

`[0,1]`

B

`[-1,0]`

C

`[-(1)/(2), (1)/(2)]`

D

`[-1,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( g(x) = \sin(7f(x)) \), we first need to determine the range of the function \( f(x) \) defined in three parts. Let's break down the solution step by step. ### Step 1: Analyze the first part of \( f(x) \) For \( 0 \leq x < 1 \): \[ f(x) = |x| = x \] The range of \( f(x) \) in this interval is: \[ [0, 1) \] ### Step 2: Analyze the second part of \( f(x) \) For \( 1 \leq x < 2 \): \[ f(x) = |x - 1| + |x - 2| \] We can break this down further: - For \( 1 < x < 2 \): \[ f(x) = (x - 1) + (2 - x) = 1 \] - For \( x = 1 \): \[ f(1) = |1 - 1| + |1 - 2| = 0 + 1 = 1 \] Thus, in the interval \( 1 \leq x < 2 \), \( f(x) \) takes the value \( 1 \). Therefore, the range from this part is: \[ \{1\} \] ### Step 3: Analyze the third part of \( f(x) \) For \( 2 \leq x < 3 \): \[ f(x) = |x - 3| \] In this interval: - For \( 2 \leq x < 3 \): \[ f(x) = 3 - x \] The range of \( f(x) \) in this interval is: \[ [0, 1) \] ### Step 4: Combine the ranges Now, we combine the ranges from all three parts: 1. From \( 0 \leq x < 1 \): \( [0, 1) \) 2. From \( 1 \leq x < 2 \): \( \{1\} \) 3. From \( 2 \leq x < 3 \): \( [0, 1) \) Thus, the overall range of \( f(x) \) is: \[ [0, 1) \] ### Step 5: Find the range of \( g(x) = \sin(7f(x)) \) Since \( f(x) \) takes values in the interval \( [0, 1) \), we can find the range of \( g(x) \): - The minimum value of \( 7f(x) \) is \( 0 \) (when \( f(x) = 0 \)). - The maximum value of \( 7f(x) \) is \( 7 \) (as \( f(x) \) approaches \( 1 \)). Now we evaluate \( g(x) = \sin(7f(x)) \): - When \( 7f(x) = 0 \), \( g(x) = \sin(0) = 0 \). - When \( 7f(x) \) approaches \( 7 \), we need to find \( \sin(7) \). ### Step 6: Determine the range of \( g(x) \) The sine function oscillates between \(-1\) and \(1\). Since \( 7 \) is less than \( 2\pi \) (approximately \( 6.28 \)), we can determine that: \[ \sin(7) \text{ is a value between } -1 \text{ and } 1. \] Thus, the range of \( g(x) \) is: \[ [-1, 1] \] ### Final Answer The range of the function \( g(x) = \sin(7f(x)) \) is: \[ [-1, 1] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

A function f is defined on the set of real numbers as follows: f(x)={(x+1, 1 le x lt 2),(2x-1, 2 le x lt 4), (3x-10, 4 le x lt 6):} (a) Find the domain of the function. (b) Find the range of the function.

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If a function f(x) is defined as f(x) = {{:(-x",",x lt 0),(x^(2)",",0 le x le 1),(x^(2)-x + 1",",x gt 1):} then

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

Let a function f be defined as f(x) = {:{(x," if " 0 le x lt 1/2),(0," if "x=1/2),(x-1," if" 1/2 lt x le 1):} Establish the existence of Lim_(x to 1/2) f(x) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |