Home
Class 12
MATHS
Number of integral values of x in the do...

Number of integral values of x in the domain of function `f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10)` is equal to

A

5

B

6

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of integral values of \( x \) in the domain of the function \( f(x) = \sqrt{\ln(|\ln|x||)} + \sqrt{7|x| - (|x|)^2 - 10} \), we need to ensure that both components of the function are defined and non-negative. ### Step 1: Analyze the first component \( \sqrt{\ln(|\ln|x||)} \) For \( \sqrt{\ln(|\ln|x||)} \) to be defined, we need: \[ \ln(|\ln|x||) \geq 0 \] This implies: \[ |\ln|x|| \geq 1 \] Thus, we have two cases: 1. \( \ln|x| \geq 1 \) which gives \( |x| \geq e \) 2. \( \ln|x| \leq -1 \) which gives \( |x| \leq e^{-1} \) This leads to the intervals: \[ |x| \geq e \quad \text{or} \quad |x| \leq \frac{1}{e} \] ### Step 2: Analyze the second component \( \sqrt{7|x| - (|x|)^2 - 10} \) For \( \sqrt{7|x| - (|x|)^2 - 10} \) to be defined, we need: \[ 7|x| - (|x|)^2 - 10 \geq 0 \] Rearranging gives: \[ (|x|)^2 - 7|x| + 10 \leq 0 \] Factoring the quadratic: \[ (|x| - 5)(|x| - 2) \leq 0 \] This inequality holds when: \[ 2 \leq |x| \leq 5 \] ### Step 3: Combine the intervals Now we have two conditions: 1. \( |x| \geq e \) or \( |x| \leq \frac{1}{e} \) 2. \( 2 \leq |x| \leq 5 \) Since \( e \approx 2.718 \), we can summarize the intervals: - From \( |x| \geq e \), we have \( |x| \) can take values in \( [e, 5] \). - From \( |x| \leq \frac{1}{e} \), this interval does not contribute any integral values since \( \frac{1}{e} \approx 0.367 \). Thus, we focus on the interval \( [e, 5] \). ### Step 4: Identify integral values The integral values of \( |x| \) in the interval \( [e, 5] \) are: - The integers between \( 2.718 \) and \( 5 \) are \( 3, 4, 5 \). Additionally, since \( |x| \) can be negative, we also consider: - The negative counterparts: \( -3, -4, -5 \). ### Step 5: Count the integral values The integral values of \( x \) are: - Positive: \( 3, 4, 5 \) - Negative: \( -3, -4, -5 \) Thus, the total number of integral values of \( x \) is \( 3 + 3 = 6 \). ### Final Answer The number of integral values of \( x \) in the domain of the function is \( \boxed{6} \). ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT|23 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Number of integral values of x in the domain of f(x)=sqrt(-[x]^2+3[x]-2) is

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

Number of integral values of x satisfying function f(x)=log(x-1)+log(3-x)

The domain of the function f(x)=sqrt( log_(2) sinx ) , is

Find the domain of the function : f(x)=sqrt(((log)_(0. 3)|x-2|)/(|x|))

Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

Find the domain of function f(x)=3/(sqrt(4-x^(2)))log(x^(3)-x)

Number of integers in domain of function f(x) =log_(|x^2|)(4-|x|)+log_2{sqrt(x)} is

Find the domain of following function: f(x)=1/(log(2-x))+sqrt(x+1)

Find domain of the function f(x)=1/(log_10 (1-x)) +sqrt(x+2)

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -SUBJECTIVE TYPE PROBLEMS
  1. Number of integral values of x in the domain of function f (x)= sqrt(l...

    Text Solution

    |

  2. Let f (x) be a polynomial of degree 6 with leading coefficient 2009, S...

    Text Solution

    |

  3. Let f(x)=x^(3)-3x+1. Then number of different real solutions of f(f(x)...

    Text Solution

    |

  4. If f(x+y+1)={sqrt(f(x))+sqrt(f(y))}^2 and f(0)=1AAx ,y in R ,d e t e ...

    Text Solution

    |

  5. If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 ...

    Text Solution

    |

  6. The number of elements in the range of the function : y =sin ^(-1) [...

    Text Solution

    |

  7. The number of integers in the range of function f(x)= [sinx] + [cosx] ...

    Text Solution

    |

  8. If P (x) is polynomial of degree 4 such than P (-1)=P (1) =5 and P (-2...

    Text Solution

    |

  9. The number of integral vlaue (s) of k for which the curve y = sqrt ( ...

    Text Solution

    |

  10. Let the solution set of the equation sqrt([x+[x/2]])+[sqrt({x})+[x/3]]...

    Text Solution

    |

  11. For the real number x, let f (x)=(1)/( ""^(2011sqrt(1-x^(2011)))). Fi...

    Text Solution

    |

  12. Find the number of elements contained in the range of the function f (...

    Text Solution

    |

  13. Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -...

    Text Solution

    |

  14. Let f (x) = (x+5)/(sqrt(x^(2) +1) ) , then the smallest integral va...

    Text Solution

    |

  15. The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x...

    Text Solution

    |

  16. Let f (x) =x ^(2)-bx+c,b is an odd positive integer. Given that f (x)=...

    Text Solution

    |

  17. Let f(x) be a continuous function such that f(0) = 1 and f(x)=f(x/7)=x...

    Text Solution

    |

  18. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  19. Let f(x)= cx+d/ax+b ​ . Then fof(x) = x provided that.

    Text Solution

    |

  20. Let A = {x|x ^(2) -4x+ 3 lt 0 , x in R} B={x|2^(1-x)+p le 0;x^2-2(p+7...

    Text Solution

    |

  21. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |