Home
Class 12
MATHS
Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, ...

Let `f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):}` then the tuue equations:

A

`f (f(f ((3)/(2)))=f((3)/(2))`

B

`1+f (f(f((5)/(2))))=f((5)/(2))`

C

`f(f(f(2)))=f(1)`

D

`ubrace(f (f(f(......f(4))...)))=2012`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the piecewise function defined as follows: \[ f(x) = \begin{cases} x^2 & \text{if } 0 < x < 2 \\ 2x - 3 & \text{if } 2 \leq x < 3 \\ x + 2 & \text{if } x \geq 3 \end{cases} \] We need to determine which of the given equations involving \( f \) are true. Let's denote the equations as follows for clarity: 1. \( f(f(3/2)) = 3/2 \) 2. \( 1 + f(f(f(5/2))) = f(5/2) \) 3. \( f(f(f(2))) = f(1) \) 4. \( f(f(f(3))) = 6 \) We will check each equation step by step. ### Step 1: Check Equation 1: \( f(f(3/2)) = 3/2 \) 1. **Calculate \( f(3/2) \)**: - Since \( 3/2 \) lies in the interval \( (0, 2) \), we use \( f(x) = x^2 \). - Thus, \( f(3/2) = (3/2)^2 = 9/4 = 2.25 \). 2. **Calculate \( f(f(3/2)) = f(2.25) \)**: - Since \( 2.25 \) lies in the interval \( [2, 3) \), we use \( f(x) = 2x - 3 \). - Thus, \( f(2.25) = 2(2.25) - 3 = 4.5 - 3 = 1.5 = 3/2 \). 3. **Conclusion**: - LHS = \( f(f(3/2)) = 3/2 \) matches RHS. - Therefore, **Equation 1 is true**. ### Step 2: Check Equation 2: \( 1 + f(f(f(5/2))) = f(5/2) \) 1. **Calculate \( f(5/2) \)**: - Since \( 5/2 = 2.5 \) lies in the interval \( [2, 3) \), we use \( f(x) = 2x - 3 \). - Thus, \( f(5/2) = 2(5/2) - 3 = 5 - 3 = 2 \). 2. **Calculate \( f(f(5/2)) = f(2) \)**: - Since \( 2 \) lies in the interval \( [2, 3) \), we again use \( f(x) = 2x - 3 \). - Thus, \( f(2) = 2(2) - 3 = 4 - 3 = 1 \). 3. **Calculate \( f(f(f(5/2))) = f(1) \)**: - Since \( 1 \) lies in the interval \( (0, 2) \), we use \( f(x) = x^2 \). - Thus, \( f(1) = 1^2 = 1 \). 4. **Combine results**: - LHS = \( 1 + f(f(f(5/2))) = 1 + 1 = 2 \). - RHS = \( f(5/2) = 2 \). - Therefore, **Equation 2 is true**. ### Step 3: Check Equation 3: \( f(f(f(2))) = f(1) \) 1. **Calculate \( f(2) \)**: - Since \( 2 \) lies in the interval \( [2, 3) \), we use \( f(x) = 2x - 3 \). - Thus, \( f(2) = 2(2) - 3 = 1 \). 2. **Calculate \( f(f(2)) = f(1) \)**: - Since \( 1 \) lies in the interval \( (0, 2) \), we use \( f(x) = x^2 \). - Thus, \( f(1) = 1^2 = 1 \). 3. **Calculate \( f(f(f(2))) = f(f(1)) = f(1) \)**: - We already calculated \( f(1) = 1 \). 4. **Combine results**: - LHS = \( f(f(f(2))) = 1 \). - RHS = \( f(1) = 1 \). - Therefore, **Equation 3 is true**. ### Step 4: Check Equation 4: \( f(f(f(3))) = 6 \) 1. **Calculate \( f(3) \)**: - Since \( 3 \) lies in the interval \( [3, \infty) \), we use \( f(x) = x + 2 \). - Thus, \( f(3) = 3 + 2 = 5 \). 2. **Calculate \( f(f(3)) = f(5) \)**: - Since \( 5 \) lies in the interval \( [3, \infty) \), we use \( f(x) = x + 2 \). - Thus, \( f(5) = 5 + 2 = 7 \). 3. **Calculate \( f(f(f(3))) = f(7) \)**: - Since \( 7 \) lies in the interval \( [3, \infty) \), we use \( f(x) = x + 2 \). - Thus, \( f(7) = 7 + 2 = 9 \). 4. **Combine results**: - LHS = \( f(f(f(3))) = 9 \). - RHS = \( 6 \). - Therefore, **Equation 4 is false**. ### Final Conclusion: The true equations are: - Equation 1: True - Equation 2: True - Equation 3: True - Equation 4: False
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)=[{:((3x-x ^(2))/(2),,, x lt 2),([x-1],,, 2 le x lt 3),( x ^(2) -8x+17,,, x ge3):}: then which of the following hold(s) good ?

If f(x) ={ x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3 then the quadratic equation whose roots are lim_(x->2^+)f(x) and lim_(x->2^-)f(x) is

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is dicontnous is:

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is non-differentiable is :

Let f(x)= {{:(1+ sin x, x lt 0 ),(x^2-x+1, x ge 0 ):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f (x)= {{:(a-3x,,, -2 le x lt 0),( 4x+-3,,, 0 le x lt 1):},if f (x) has smallest valueat x=0, then range of a, is

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following functions are defined for all x in R? (Where [...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range...

    Text Solution

    |

  7. Which option (s) is/are ture ?

    Text Solution

    |

  8. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  9. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  10. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  11. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  12. For the equation (e^-x)/(x+1) which of the following statement(s) is/a...

    Text Solution

    |

  13. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  14. The equation ∣∣x−1∣+a∣=4 can have real solutions for x if a belongs to...

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(2))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |