Home
Class 12
MATHS
In function f(x)=cos^(-1)x+cos^(-1)(x/2+...

In function `f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2)` , then Range of `f(x)` is `[pi/3,(10pi)/3]]` Range of `f(x)` is `[pi/3,5pi]` `f(x)` is one-one for `x in [-1,1/2]` `f(x)` is one-one for `x in [1/2,1]`

A

Range of `f (x) is [(pi)/(3), (10 pi)/(3)]`

B

Rang `f (x) is [(pi)/(3), (5 pi)/(3)]`

C

f (x) is one-one for ` x in [-1, (1)/(2)]`

D

f (x) is one-one for `x in [(1)/(2), 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \cos^{-1} x + \cos^{-1} \left( \frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right) \) and determine its range and whether it is one-one in the specified intervals. ### Step 1: Rewrite the function Let \( x = \cos \theta \), where \( \theta \) is in the interval \( [0, \pi] \). Then we can rewrite the function as: \[ f(x) = \cos^{-1}(\cos \theta) + \cos^{-1}\left(\frac{\cos \theta}{2} + \frac{\sqrt{3 - 3\cos^2 \theta}}{2}\right) \] This simplifies to: \[ f(x) = \theta + \cos^{-1}\left(\frac{\cos \theta}{2} + \frac{\sqrt{3 - 3\cos^2 \theta}}{2}\right) \] ### Step 2: Simplify the second term The term \( \frac{\cos \theta}{2} + \frac{\sqrt{3 - 3\cos^2 \theta}}{2} \) can be recognized as: \[ \frac{\cos \theta + \sqrt{3 - 3\cos^2 \theta}}{2} \] Using the identity \( \sqrt{3 - 3\cos^2 \theta} = \sqrt{3(1 - \cos^2 \theta)} = \sqrt{3\sin^2 \theta} = \sqrt{3} \sin \theta \), we can rewrite it as: \[ \frac{\cos \theta + \sqrt{3} \sin \theta}{2} \] ### Step 3: Analyze the range of \( f(x) \) For \( \theta \) in the interval \( [0, \pi] \): - When \( \theta = 0 \): \[ f(1) = 0 + \cos^{-1}\left(\frac{1 + 0}{2}\right) = \cos^{-1}(0.5) = \frac{\pi}{3} \] - When \( \theta = \frac{\pi}{3} \): \[ f\left(\frac{1}{2}\right) = \frac{\pi}{3} + \cos^{-1}(1) = \frac{\pi}{3} + 0 = \frac{\pi}{3} \] - When \( \theta = \pi \): \[ f(-1) = \pi + \cos^{-1}(-1) = \pi + \pi = 2\pi \] ### Step 4: Determine the range From the analysis, we find that: - The minimum value of \( f(x) \) is \( \frac{\pi}{3} \). - The maximum value of \( f(x) \) is \( 2\pi \). Thus, the range of \( f(x) \) is: \[ \left[\frac{\pi}{3}, 2\pi\right] \] ### Step 5: Check if \( f(x) \) is one-one To check if \( f(x) \) is one-one, we need to analyze the intervals: 1. For \( x \in [-1, \frac{1}{2}] \): - The function is increasing since both components \( \cos^{-1} x \) and \( \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) \) are decreasing functions, making \( f(x) \) one-one in this interval. 2. For \( x \in [\frac{1}{2}, 1] \): - The function is also increasing, thus it remains one-one in this interval. ### Conclusion The correct options based on our analysis are: - The range of \( f(x) \) is \( \left[\frac{\pi}{3}, 2\pi\right] \). - \( f(x) \) is one-one for \( x \in [-1, \frac{1}{2}] \) and \( x \in [\frac{1}{2}, 1] \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

Consider the function f(x)=(sec^(-1)x)^2+(cos e c^(-1)x)^2 then Range of f(x) is [(pi^2)/8,(5pi^2)/4] b. Range of f(x) is [(pi^2)/4,(5pi^2)/4] c. Domain of f(x)i sR-(-1,1) d. f(x) is objective

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Range of f(x)=cos^(- 1)x+2sin^(- 1)x+3tan^(- 1)x is

Domain and range of the function f(x)=cos(sqrt(1-x^(2))) are

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following functions are defined for all x in R? (Where [...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range...

    Text Solution

    |

  7. Which option (s) is/are ture ?

    Text Solution

    |

  8. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  9. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  10. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  11. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  12. For the equation (e^-x)/(x+1) which of the following statement(s) is/a...

    Text Solution

    |

  13. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  14. The equation ∣∣x−1∣+a∣=4 can have real solutions for x if a belongs to...

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(2))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |