Home
Class 12
MATHS
If the domain of f (x) =1/picos ^(-1)[lo...

If the domain of `f (x) =1/picos ^(-1)[log _(3) ((x^(2))/(3))]` where, `x gt 0` is [a,b] and the range of `f (x)` is [c,d], then :

A

a,b are the roots of the equation `x ^(4) -3x ^(4) -3xc ^(3) -x+3 =0`

B

a,b are the roots of the equatin `x ^(4) -x ^(3) +x^(2)-2x+1 =0`

C

`a ^(3) +d ^(3) =1`

D

`a ^(2) +b^(2) +c^(2)=11`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the domain and range of the function \( f(x) = \frac{1}{\pi} \cos^{-1} \left( \log_3 \left( \frac{x^2}{3} \right) \right) \) where \( x > 0 \). ### Step 1: Determine the domain of \( f(x) \) 1. **Logarithm Condition**: The expression inside the logarithm must be positive. Since \( x > 0 \), we have: \[ \frac{x^2}{3} > 0 \quad \text{(which is always true for } x > 0\text{)} \] 2. **Cosine Inverse Condition**: The argument of the \( \cos^{-1} \) function must be in the interval \([-1, 1]\): \[ -1 \leq \log_3 \left( \frac{x^2}{3} \right) \leq 1 \] 3. **Convert Logarithmic Inequalities**: - For \( \log_3 \left( \frac{x^2}{3} \right) \leq 1 \): \[ \frac{x^2}{3} \leq 3 \implies x^2 \leq 9 \implies x \leq 3 \] - For \( \log_3 \left( \frac{x^2}{3} \right) \geq -1 \): \[ \frac{x^2}{3} \geq \frac{1}{3} \implies x^2 \geq 1 \implies x \geq 1 \] 4. **Combine the Conditions**: From the inequalities \( x \geq 1 \) and \( x \leq 3 \), we find: \[ 1 \leq x \leq 3 \] Thus, the domain of \( f(x) \) is: \[ [1, 3] \] ### Step 2: Determine the range of \( f(x) \) 1. **Evaluate the limits of \( f(x) \)**: - At \( x = 1 \): \[ f(1) = \frac{1}{\pi} \cos^{-1} \left( \log_3 \left( \frac{1^2}{3} \right) \right) = \frac{1}{\pi} \cos^{-1} \left( \log_3 \left( \frac{1}{3} \right) \right) = \frac{1}{\pi} \cos^{-1}(-1) = \frac{1}{\pi} \cdot \pi = 1 \] - At \( x = 3 \): \[ f(3) = \frac{1}{\pi} \cos^{-1} \left( \log_3 \left( \frac{3^2}{3} \right) \right) = \frac{1}{\pi} \cos^{-1} \left( \log_3(3) \right) = \frac{1}{\pi} \cos^{-1}(1) = \frac{1}{\pi} \cdot 0 = 0 \] 2. **Range of \( f(x) \)**: Since \( f(x) \) decreases from 1 to 0 as \( x \) goes from 1 to 3, the range of \( f(x) \) is: \[ [0, 1] \] ### Final Result - The domain of \( f(x) \) is \([1, 3]\) (where \( a = 1 \) and \( b = 3 \)). - The range of \( f(x) \) is \([0, 1]\) (where \( c = 0 \) and \( d = 1 \)).
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The domain of f(x)=sin^(-1){log_3(x/3)}

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the domain and range of f(x)=cos^(-1)sqrt((log)_([x])((|x|)/x))

The domain of the function f(x)=1/(9-x^2)+log_(20)(x^3-3x) is

The domain of definition of f(x)=log_(0.5){-log_(2)((3x-1)/(3x+2))} , is

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))] .

Find the domain and range of f(x)=(1)/(2-sin3x).

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following functions are defined for all x in R? (Where [...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range...

    Text Solution

    |

  7. Which option (s) is/are ture ?

    Text Solution

    |

  8. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  9. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  10. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  11. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  12. For the equation (e^-x)/(x+1) which of the following statement(s) is/a...

    Text Solution

    |

  13. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  14. The equation ∣∣x−1∣+a∣=4 can have real solutions for x if a belongs to...

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(2))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |