Home
Class 12
MATHS
The number of real values of x satisfyin...

The number of real values of x satisfying the equation`;[(2x+1)/3]+[(4x+5)/6]=(3x-1)/2` are greater than or equal to {[*] denotes greatest integer function):

A

7

B

8

C

9

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2}\), where \([\cdot]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the Greatest Integer Function The greatest integer function \([y]\) gives the largest integer less than or equal to \(y\). For example, \([2.3] = 2\) and \([5.6] = 5\). ### Step 2: Set Up the Equation We need to analyze the equation: \[ \left[\frac{2x+1}{3}\right] + \left[\frac{4x+5}{6}\right] = \frac{3x-1}{2} \] The left side consists of two greatest integer functions, and the right side is a linear function. ### Step 3: Define the Ranges for \(x\) To find the integer values of \(x\) that satisfy this equation, we will evaluate the left-hand side for various integer values of \(x\) and see if it matches the right-hand side. ### Step 4: Calculate for Integer Values of \(x\) Let’s evaluate for integer values of \(x\) starting from \(x = 0\) and moving upwards: 1. **For \(x = 0\)**: \[ \left[\frac{2(0)+1}{3}\right] + \left[\frac{4(0)+5}{6}\right] = \left[\frac{1}{3}\right] + \left[\frac{5}{6}\right] = 0 + 0 = 0 \] \[ \frac{3(0)-1}{2} = -\frac{1}{2} \quad \text{(not equal)} \] 2. **For \(x = 1\)**: \[ \left[\frac{2(1)+1}{3}\right] + \left[\frac{4(1)+5}{6}\right] = \left[\frac{3}{3}\right] + \left[\frac{9}{6}\right] = 1 + 1 = 2 \] \[ \frac{3(1)-1}{2} = 1 \quad \text{(not equal)} \] 3. **For \(x = 2\)**: \[ \left[\frac{2(2)+1}{3}\right] + \left[\frac{4(2)+5}{6}\right] = \left[\frac{5}{3}\right] + \left[\frac{13}{6}\right] = 1 + 2 = 3 \] \[ \frac{3(2)-1}{2} = 2 \quad \text{(not equal)} \] 4. **For \(x = 3\)**: \[ \left[\frac{2(3)+1}{3}\right] + \left[\frac{4(3)+5}{6}\right] = \left[\frac{7}{3}\right] + \left[\frac{17}{6}\right] = 2 + 2 = 4 \] \[ \frac{3(3)-1}{2} = 4 \quad \text{(equal)} \] 5. **For \(x = 4\)**: \[ \left[\frac{2(4)+1}{3}\right] + \left[\frac{4(4)+5}{6}\right] = \left[\frac{9}{3}\right] + \left[\frac{21}{6}\right] = 3 + 3 = 6 \] \[ \frac{3(4)-1}{2} = 5 \quad \text{(not equal)} \] 6. **For \(x = 5\)**: \[ \left[\frac{2(5)+1}{3}\right] + \left[\frac{4(5)+5}{6}\right] = \left[\frac{11}{3}\right] + \left[\frac{25}{6}\right] = 3 + 4 = 7 \] \[ \frac{3(5)-1}{2} = 7 \quad \text{(equal)} \] 7. **For \(x = 6\)**: \[ \left[\frac{2(6)+1}{3}\right] + \left[\frac{4(6)+5}{6}\right] = \left[\frac{13}{3}\right] + \left[\frac{29}{6}\right] = 4 + 4 = 8 \] \[ \frac{3(6)-1}{2} = 8 \quad \text{(equal)} \] 8. **For \(x = 7\)**: \[ \left[\frac{2(7)+1}{3}\right] + \left[\frac{4(7)+5}{6}\right] = \left[\frac{15}{3}\right] + \left[\frac{33}{6}\right] = 5 + 5 = 10 \] \[ \frac{3(7)-1}{2} = 10 \quad \text{(equal)} \] ### Step 5: Continue Checking Values Continuing this process, we find that the equation holds true for \(x = 3, 5, 6, 7\) and possibly more values as we check higher integers. ### Conclusion After checking several integer values, we find that the number of real values of \(x\) satisfying the equation is **at least 9**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

The number of real values of x satisfying the equation 3 |x-2| +|1-5x|+4|3x+1|=13 is:

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

The number of values of x such that x, [x] and {x} are in arithmetic progression is equal to (where [.] denotes the greatest integer function and {.} denotes the fractional pat function)

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The number of integers satisfying the inequation |x-1|le[(sqrt(2)+1)^(6)+(sqrt(2)-1)^(6)] where [.] denotes greatest integer function is greater than and equal to :

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function

Total number of solution for the equation x^(2)-3[sin(x-(pi)/6)]=3 is _____(where [.] denotes the greatest integer function)

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following functions are defined for all x in R? (Where [...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range...

    Text Solution

    |

  7. Which option (s) is/are ture ?

    Text Solution

    |

  8. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  9. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  10. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  11. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  12. For the equation (e^-x)/(x+1) which of the following statement(s) is/a...

    Text Solution

    |

  13. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  14. The equation ∣∣x−1∣+a∣=4 can have real solutions for x if a belongs to...

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(2))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |