Home
Class 12
MATHS
Let f (x= sin ^(6) ((x )/(4)) + cos ^(6)...

Let `f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x)` denotes `n ^(th)` derivative of f evaluated at x. Then which of the following hold ?

A

`f ^(2014) (0) =-3/8`

B

`f ^(2015) (0) =3/8`

C

`f ^(2010) ((pi)/(2))=0`

D

`f ^(2011) ((pi)/(2)) =3/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given and find its derivatives. Let's go through the steps systematically. ### Step 1: Define the function We are given the function: \[ f(x) = \sin^6\left(\frac{x}{4}\right) + \cos^6\left(\frac{x}{4}\right) \] ### Step 2: Simplify the function Using the identity \( a^3 + b^3 = (a + b)(a^2 - ab + b^2) \), we can express \( f(x) \) as: Let \( a = \sin^2\left(\frac{x}{4}\right) \) and \( b = \cos^2\left(\frac{x}{4}\right) \). Then, \[ f(x) = a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Since \( a + b = 1 \), we have: \[ f(x) = 1 \cdot \left( a^2 - ab + b^2 \right) = a^2 - ab + b^2 \] Now, substituting back: \[ f(x) = \sin^4\left(\frac{x}{4}\right) - \sin^2\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right) + \cos^4\left(\frac{x}{4}\right) \] ### Step 3: Further simplify using trigonometric identities Using the identity \( \sin^2\theta + \cos^2\theta = 1 \): \[ f(x) = \sin^4\left(\frac{x}{4}\right) + \cos^4\left(\frac{x}{4}\right) - \sin^2\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right) \] We can express \( \sin^4\theta + \cos^4\theta \) as: \[ \sin^4\theta + \cos^4\theta = (\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta\cos^2\theta = 1 - 2\sin^2\theta\cos^2\theta \] Thus, \[ f(x) = 1 - 3\sin^2\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right) \] ### Step 4: Use double angle identity Using the double angle identity \( \sin(2\theta) = 2\sin\theta\cos\theta \): \[ \sin^2\left(\frac{x}{4}\right)\cos^2\left(\frac{x}{4}\right) = \frac{1}{4}\sin^2\left(\frac{x}{2}\right) \] So, \[ f(x) = 1 - \frac{3}{4}\cdot\frac{1}{4}\sin^2\left(\frac{x}{2}\right) = 1 - \frac{3}{16}\sin^2\left(\frac{x}{2}\right) \] ### Step 5: Find the nth derivative Now we need to find the nth derivative of \( f(x) \). The function is periodic due to the sine function. The derivatives will cycle through a pattern based on the periodicity of sine and cosine functions. 1. **First derivative**: \[ f'(x) = -\frac{3}{16}\cdot\frac{1}{2}\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = -\frac{3}{32}\sin(x) \] 2. **Second derivative**: \[ f''(x) = -\frac{3}{32}\cos(x) \] 3. **Third derivative**: \[ f'''(x) = \frac{3}{32}\sin(x) \] 4. **Fourth derivative**: \[ f^{(4)}(x) = \frac{3}{32}\cos(x) \] ### Step 6: Identify the pattern From the derivatives, we can see that: - \( f^{(n)}(x) \) will cycle every four derivatives: - \( f^{(0)}(x) = f(x) \) - \( f^{(1)}(x) = -\frac{3}{32}\sin(x) \) - \( f^{(2)}(x) = -\frac{3}{32}\cos(x) \) - \( f^{(3)}(x) = \frac{3}{32}\sin(x) \) - \( f^{(4)}(x) = \frac{3}{32}\cos(x) \) ### Conclusion Thus, we can conclude that: - For \( n \equiv 0 \mod 4 \): \( f^{(n)}(x) = f(x) \) - For \( n \equiv 1 \mod 4 \): \( f^{(n)}(x) = -\frac{3}{32}\sin(x) \) - For \( n \equiv 2 \mod 4 \): \( f^{(n)}(x) = -\frac{3}{32}\cos(x) \) - For \( n \equiv 3 \mod 4 \): \( f^{(n)}(x) = \frac{3}{32}\sin(x) \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise MATCHING TYPE PROBLEMS|6 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of f(x)=x^4

Let f (x) = x tan ^(-1) (x^(2)) + x^(4) Let f ^(k) (x) denotes k ^(th) derivative of f (x) w.r.t. x, k in N. If f^(2m) (0) != 0, m belongs to N, then m =

Find the derivative of f(x)=e^(4x) + Cos 3x

Let f : R ->R defined by f(x) = min(|x|, 1-|x|) , then which of the following hold(s) good ?

If f(x)=sin^6x+cos^6x , then which one of the following is false

Let f:R rarr R defined by f(x)=cos^(-1)(-{-x}), where {x} denotes fractional part of x. Then, which of the following is/are correct?

Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^n(x) denotes the n^(th) derivativeof f(x) w.r.t x then then value of n is

Let f (x)= {{:(x ^(n) (sin ""(1)/(x )",") , x ne 0),( 0"," , x =0):} Such that f (x) is continuous at x =0, f '(0) is real and finite, and lim _(x to 0^(+)) f'(x) does not exist. The holds true for which of the following values of n ?

Find the anti derivative F of f defined by f(x)=4x^3-6 , where F (0) = 3

Period of f(x) = sin^4 x + cos^4 x

VIKAS GUPTA (BLACK BOOK) ENGLISH-FUNCTION -ONE OR MORE THAN ONE ANSWE IS/ARE CORRECT
  1. |log (e)|x|| =|k -1| -3 has four distict roots then k satisfies : (whe...

    Text Solution

    |

  2. Which of the following functions are defined for all x in R? (Where [...

    Text Solution

    |

  3. Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} the...

    Text Solution

    |

  4. Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)...

    Text Solution

    |

  5. Let f (x) be invertible function and let f ^(-1) (x) be is inverse. Le...

    Text Solution

    |

  6. In function f(x)=cos^(-1)x+cos^(-1)(x/2+(sqrt(3-3x^2))/2) , then Range...

    Text Solution

    |

  7. Which option (s) is/are ture ?

    Text Solution

    |

  8. If f (x) =[ln (x)/(e)] +[ln (e)/(x)], where [.] denotes greatest inter...

    Text Solution

    |

  9. If f (x)= {{:(x ^(3), , x =Q),(-x ^(3),,x ne Q):}, then :

    Text Solution

    |

  10. Let f(x) be a real valued function such that f(0)=1/2 and f(x+y)=f(x)f...

    Text Solution

    |

  11. f(x) is an even periodic function with period 10. In [0,5] f (x)= {{:(...

    Text Solution

    |

  12. For the equation (e^-x)/(x+1) which of the following statement(s) is/a...

    Text Solution

    |

  13. . For x in R^+, if x, [x], {x} are in harmonic progression then the va...

    Text Solution

    |

  14. The equation ∣∣x−1∣+a∣=4 can have real solutions for x if a belongs to...

    Text Solution

    |

  15. If the domain of f (x) =1/picos ^(-1)[log (3) ((x^(2))/(3))] where, x ...

    Text Solution

    |

  16. The number of real values of x satisfying the equation;[(2x+1)/3]+[(4x...

    Text Solution

    |

  17. Let f (x= sin ^(6) ((x )/(4)) + cos ^(6) ((x)/(4)). If f ^(n) (x) deno...

    Text Solution

    |

  18. Which of the following is (are) incorrect ?

    Text Solution

    |

  19. If [x] denotes the integral part of x for real x, and S= [(1)/(4)]+[(...

    Text Solution

    |

  20. Let f(x) = log ({x}) [x] g (x) =log ({x})-{x} h (x) log ({x}) {x}...

    Text Solution

    |