Home
Class 12
MATHS
Let f(x)={{:(1+x",", 0 le x le 2),(3-x",...

Let `f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):}`
find (fof) (x).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(f(x)) \) for the piecewise function \[ f(x) = \begin{cases} 1 + x & \text{if } 0 \leq x \leq 2 \\ 3 - x & \text{if } 2 < x \leq 3 \end{cases} \] we will evaluate \( f(f(x)) \) by considering different cases based on the value of \( x \). ### Step 1: Case 1 - \( 0 \leq x \leq 1 \) In this case, \( f(x) = 1 + x \). Now we need to find \( f(f(x)) = f(1 + x) \). - Since \( 1 + x \) will be in the range \( [1, 2] \) when \( x \) is in \( [0, 1] \), we use the first piece of the function: \[ f(1 + x) = 1 + (1 + x) = 2 + x. \] ### Step 2: Case 2 - \( 1 < x \leq 2 \) In this case, \( f(x) = 1 + x \). Now we need to find \( f(f(x)) = f(1 + x) \). - Here, \( 1 + x \) will be in the range \( (2, 3] \) when \( x \) is in \( (1, 2] \), so we use the second piece of the function: \[ f(1 + x) = 3 - (1 + x) = 2 - x. \] ### Step 3: Case 3 - \( 2 < x \leq 3 \) In this case, \( f(x) = 3 - x \). Now we need to find \( f(f(x)) = f(3 - x) \). - The value \( 3 - x \) will be in the range \( [0, 1) \) when \( x \) is in \( (2, 3] \), so we use the first piece of the function: \[ f(3 - x) = 1 + (3 - x) = 4 - x. \] ### Final Result Combining all the cases, we have: \[ f(f(x)) = \begin{cases} 2 + x & \text{if } 0 \leq x \leq 1 \\ 2 - x & \text{if } 1 < x \leq 2 \\ 4 - x & \text{if } 2 < x \leq 3 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise SUBJECTIVE TYPE PROBLEMS|33 Videos
  • FUNCTION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise COMPREHENSION TYPE PROBLEMS|13 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Let f(x)={(2x+a",",x ge -1),(bx^(2)+3",",x lt -1):} and g(x)={(x+4",",0 le x le 4),(-3x-2",",-2 lt x lt 0):} If the domain of g(f(x))" is " [-1, 4], then

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f (x)= [{:(e ^(x-1),,, 0 le x le 1),( x+1-{x},', 1 lt x lt 3 ):}and g (x) =x ^(2) -ax +b such that f (x)g (x) is continous [0,3] then the ordered pair (a,b) is (where {.} denotes fractional part function):

Let f (x) = [{:(1-x,,, 0 le x le 1),(0,,, 1 lt x le 2 and g (x) = int_(0)^(x) f (t)dt.),( (2-x)^(2),,, 2 lt x le 3):} Let the tangent to the curve y = g( x) at point P whose abscissa is 5/2 cuts x-axis in point Q. Let the prependicular from point Q on x-axis meets the curve y =g (x) in point R .Find equation of tangent at to y=g(x) at P .Also the value of g (1) =

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then