Home
Class 12
MATHS
If x,y,z in R and |{:(x,y^2,z^3),(x^4,y^...

If x,y,z `in` R and `|{:(x,y^2,z^3),(x^4,y^5,z^6),(x^7,y^8,z^9):}|=2 `
then find the value of
`|{:(y^5z^6(z^3-y^3),x^4z^6(x^3-z^3),x^4y^5(y^3-x^3)),(y^2z^3(y^6-z^6),xz^3(z^6-x^6), xy^2(x^6-y^6)),(y^2z^3(z^3-y^3),xz^3(x^3-z^3),xy^2(y^3-x^3)):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of the determinant: \[ \Delta_2 = \left| \begin{array}{ccc} y^5 z^6 (z^3 - y^3) & x^4 z^6 (x^3 - z^3) & x^4 y^5 (y^3 - x^3) \\ y^2 z^3 (y^6 - z^6) & x z^3 (z^6 - x^6) & x y^2 (x^6 - y^6) \\ y^2 z^3 (z^3 - y^3) & x z^3 (x^3 - z^3) & x y^2 (y^3 - x^3) \end{array} \right| \] ### Step-by-step Solution: 1. **Understanding the Given Determinant**: We know that the determinant of the first matrix is given as \( \Delta_1 = 2 \). The first matrix is: \[ \Delta_1 = \left| \begin{array}{ccc} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{array} \right| = 2 \] 2. **Identifying the Structure of \(\Delta_2\)**: The second determinant \(\Delta_2\) can be expressed in terms of the cofactors of \(\Delta_1\). The elements of \(\Delta_2\) are constructed from the differences of powers of \(x\), \(y\), and \(z\). 3. **Using Properties of Determinants**: We can use the property of determinants that relates the determinant of a matrix to the determinant of its adjoint. For a square matrix \(A\) of order \(n\): \[ \text{det}(\text{adj}(A)) = \text{det}(A)^{n-1} \] Here, \(n = 3\) since we have a \(3 \times 3\) matrix. 4. **Finding the Value of \(\Delta_2\)**: Since \(\Delta_2\) is related to the adjoint of the matrix corresponding to \(\Delta_1\), we can write: \[ \Delta_2 = \text{det}(\text{adj}(A)) = \text{det}(A)^{3-1} = \text{det}(A)^2 \] Given that \(\Delta_1 = 2\), we can substitute this value: \[ \Delta_2 = (2)^2 = 4 \] ### Final Answer: \[ \Delta_2 = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Let |{:(y^(5)z^(6)(z^(3)-y^(3)),,x^(4)z^(6)(x^(3)-z^(3)),,x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),,xz^(3)(z^(6)-x^(6)) ,,xy^(2)(x^(6)-y^(6))),(y^(2)^(3)(z^(3)-y^(3)),,xz^(3)(x^(3)-z^(3)),,xy^(2)(y^(3)-x^(3))):}| " and " Delta_(2)= |{:(x,,y^(2),,z^(3)),(x^(4),,y^(5) ,,z^(6)),(x^(7),,y^(8),,z^(9)):}| .Then Delta_(1)Delta_(2) is equal to

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

Write the value of |(x+y,y+z,z+x),(z,x,y),(-3,-3,-3)|

If x = 2, y = 3 and z = -1, find the values of : (2x-3y+4z)/(3x-z)

If |(x, x+y, x+y+z),(2x,3x+2y, 4x+3y+2z),(3x,6x+3y, 10x+6y+3z)|=64 then the real value of x is

The value of {(x-y)^3+(y-z)^3+(z-x)^3}/{9(x-y)(y-z)(z-x)} (1) 0 (2) 1/9 (3) 1/3 (4) 1

If x+y+z=8\ \ a n d\ \ \ x y+y z+z x=20 , find the value of x^3+y^3+z^3-3x y z

Simplify: ((x^(2)-y^(2))^(3) + (y^(2) - z^(2))^(3) + (z^(2) -x^(2))^(3))/((x-y)^(3) + (y-z)^(3) + (z-x)^(3))

In each polynomial, given below, separate the like terms : y^(2)z^(3), xy^(2)z^(3), -5x^(2)yz, -4y^(2)z^(3), -8xz^(3)y^(2), 3x^(2)yz and 2z^(3)y^(2)

Factorize: (3x-2y)^3+(2y-4z)^3+(4z-3x)^3