Home
Class 12
MATHS
Let Delta1=|{:(a1,a2,a3),(b1,b2,b3),(c1,...


Let `Delta_1=|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}| , Delta_2=|{:(6a_1,2a_2,2a_3),(3b_1,b_2,b_3),(12c_1, 4c_2,4c_3):}|` and `Delta_3=|{:(3a_1+b_1 , 3a_2+b_2 , 3a_3+b_3),(3b_1,3b_2,3b_3),(3c_1,3c_2,3c_3):}|`
then `Delta_3-Delta_2=kDelta_1`, find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \), \( \Delta_2 \), and \( \Delta_3 \) and find the value of \( k \) such that \( \Delta_3 - \Delta_2 = k \Delta_1 \). ### Step 1: Evaluate \( \Delta_1 \) Given: \[ \Delta_1 = |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)| \] This determinant is simply \( \Delta_1 \). ### Step 2: Evaluate \( \Delta_2 \) Given: \[ \Delta_2 = |(6a_1, 2a_2, 2a_3), (3b_1, b_2, b_3), (12c_1, 4c_2, 4c_3)| \] We can factor out constants from the rows: - From the first row, factor out \( 2 \) (leaving \( 3a_1, a_2, a_3 \)). - From the second row, factor out \( 3 \) (leaving \( b_1, b_2, b_3 \)). - From the third row, factor out \( 4 \) (leaving \( 3c_1, c_2, c_3 \)). Thus, \[ \Delta_2 = 2 \cdot 3 \cdot 4 \cdot |(3a_1, a_2, a_3), (b_1, b_2, b_3), (3c_1, c_2, c_3)| = 24 \Delta_1 \] ### Step 3: Evaluate \( \Delta_3 \) Given: \[ \Delta_3 = |(3a_1 + b_1, 3a_2 + b_2, 3a_3 + b_3), (3b_1, 3b_2, 3b_3), (3c_1, 3c_2, 3c_3)| \] We can express the first row as: \[ (3a_1 + b_1, 3a_2 + b_2, 3a_3 + b_3) = (3a_1, 3a_2, 3a_3) + (b_1, b_2, b_3) \] This allows us to use the property of determinants: \[ \Delta_3 = |(3a_1, 3a_2, 3a_3), (3b_1, 3b_2, 3b_3), (3c_1, 3c_2, 3c_3)| + |(b_1, b_2, b_3), (3b_1, 3b_2, 3b_3), (3c_1, 3c_2, 3c_3)| \] The first determinant can be factored as: \[ 3 \cdot |(a_1, a_2, a_3), (b_1, b_2, b_3), (c_1, c_2, c_3)| = 3 \Delta_1 \] The second determinant is zero because two rows are linearly dependent (the second row is a multiple of the first). Thus, \[ \Delta_3 = 3 \Delta_1 \] ### Step 4: Find \( \Delta_3 - \Delta_2 \) Now we can find: \[ \Delta_3 - \Delta_2 = 3 \Delta_1 - 24 \Delta_1 = (3 - 24) \Delta_1 = -21 \Delta_1 \] ### Step 5: Find \( k \) From the equation \( \Delta_3 - \Delta_2 = k \Delta_1 \), we have: \[ -21 \Delta_1 = k \Delta_1 \] Thus, \( k = -21 \). ### Final Answer The value of \( k \) is: \[ \boxed{-21} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and Delta_1=|(a_1+pb_1,b_1+qc_1,c_1+ra_1),(a_2+pb_2,b_2+qc^2,c^2+ra^2),(a_3+pb_3,b_3+qc_3,c_3+ra_3)| then Delta_1=

if D_1=|{:(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3):}| and D_2=|{:(a_1+2a_2+3a_3,2a_3,5a_2),(b_1+2b_2+3b_3,2b_3, 5b_2),(c_1+2c_2 + 3c_3 , 2c_3 , 5c_2):}| then D_2/D_1 is equal to :

Find the value of lambda for which |{:(2a_1+b_1 , 2a_2+b_2 , 2a_3+b_3),(2b_1+c_1, 2b_2+c_2 , 2b_3+c_3),(2c_1+a_1,2c_2+a_2, 2c_3+a_3):}|=lambda|{:(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3):}|

If Delta =|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| then the value of |(2a_1+3b_1+4c_1,b_1,c_1),(2a2+3b_2+4c_2,b_2,c_2),(2a_3+3b_3+4c_3,b_3,c_3)| is equal to

Let D= |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|, D_1=|(a_1+pb_1, b_1+qc_1, c1+ra_1),(a_2+pb_2, b_2+qc_2, c_2+ra_2),(a_3+pb_3, b_3+qc_3, c_3+ra_3)| , then the value of (2010D-D_1)/D_1 is

Consider the following system of equations a_1x+b_1y+c_1z=d_1, a_2x+b_2y+c_2z=d_2, a_3x+b_3y+c_3z=d_3 Let /_\= |(a_1,b_1,c_1), (a_2,b_2,c_2), (a_3,b_3,c_3)|, /_\_1= |(d_1,b_1,c_1), (d_2,b_2,c_2), (d_3,b_3,c_3)|, ,/_\_2=|(a_1,d_1,c_1), (a_2,d_2,c_2), (a_3,d_3,c_3)|,, /_\_3=|(a_1,b_1,cd_1), (a_2,b_2,d_2), (a_3,b_3,d_3)| , The given system of equations will have i. unique solution if /_\!=0 ii. infinitely many solutions if /_\=/_\_1=/_\_3=0 . iii. no solution if /_\=0 and any of /_\_1, /_\_2, /_\_3 is none zero. On the basis of above informatioin answer thefollowing questions for the following system of linear equations. . 2x+ay+6z=8, x+2y+bz=5, x+y+3z=4 The given system of equatioin has unique solution if (A) a=2,b=2 (B) a!=2,b=3 (C) a!=2, b!=3 (D) a=2,b!=3

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

If Delta=|(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)| and A_2,B_2,C_2 are respectively cofactors of a_2,b_2,c_2 then a_1A_2+b_1B_2+c_1C_2 is

suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then