Home
Class 12
MATHS
The minimum value of determinant Delta=...

The minimum value of determinant `Delta=|{:(1,cos theta,1),(-cos theta , 1,cos theta),(-1,-cos theta, 2):}| AA theta in R` is :

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the determinant \[ \Delta = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 2 \end{vmatrix} \] we will calculate the determinant step by step. ### Step 1: Calculate the Determinant Using the formula for the determinant of a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] we can assign: - \( a = 1, b = \cos \theta, c = 1 \) - \( d = -\cos \theta, e = 1, f = \cos \theta \) - \( g = -1, h = -\cos \theta, i = 2 \) Now substituting into the determinant formula: \[ \Delta = 1 \cdot (1 \cdot 2 - \cos \theta \cdot (-\cos \theta)) - \cos \theta \cdot (-\cos \theta \cdot 2 - \cos \theta \cdot (-1)) + 1 \cdot (-\cos \theta \cdot (-\cos \theta) - 1 \cdot 1) \] ### Step 2: Simplify Each Term Calculating each term: 1. **First term**: \[ 1 \cdot (2 + \cos^2 \theta) = 2 + \cos^2 \theta \] 2. **Second term**: \[ -\cos \theta \cdot (-2 \cos \theta + \cos \theta) = -\cos \theta \cdot (-\cos \theta) = \cos^2 \theta \] 3. **Third term**: \[ 1 \cdot (\cos^2 \theta - 1) = \cos^2 \theta - 1 \] ### Step 3: Combine All Terms Now, we combine all the terms: \[ \Delta = (2 + \cos^2 \theta) + \cos^2 \theta + (\cos^2 \theta - 1) \] This simplifies to: \[ \Delta = 2 + 3\cos^2 \theta - 1 = 1 + 3\cos^2 \theta \] ### Step 4: Find the Minimum Value The term \(3\cos^2 \theta\) reaches its minimum value when \(\cos^2 \theta = 0\) (since \(\cos^2 \theta\) is always non-negative). Thus, the minimum value of \(\Delta\) is: \[ \Delta_{\text{min}} = 1 + 3 \cdot 0 = 1 \] ### Final Answer The minimum value of the determinant \(\Delta\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Prove : (cos theta)/(1+sin theta) + (cos theta)/(1-sin theta)= 2 sec theta

(1)/(sin theta)+(1)/(cos theta)=

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Prove that : (cos theta)/(1-tan theta) + (sin theta)/(1-cot theta) = sin theta + cos theta

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.