Home
Class 12
MATHS
Let lim(n to oo) n sin (2 pi e lfloorn)...

Let `lim_(n to oo)` n sin (`2 pi` e `lfloorn`)= k `pi`, where `n pi N`. Find k :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{n \to \infty} n \sin(2 \pi e \lfloor n \rfloor) = k \pi \), we will follow these steps: ### Step 1: Define the limit Let \( L = \lim_{n \to \infty} n \sin(2 \pi e \lfloor n \rfloor) \). ### Step 2: Use the expansion for \( e \) Recall the expansion of \( e \): \[ e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \ldots \] Substituting this into our limit gives: \[ L = \lim_{n \to \infty} n \sin\left(2 \pi \left(1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}\right) \lfloor n \rfloor\right) \] ### Step 3: Simplify the sine term We can rewrite the sine term: \[ L = \lim_{n \to \infty} n \sin\left(2 \pi \lfloor n \rfloor + 2 \pi \left(\frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}\right) \lfloor n \rfloor\right) \] Using the property \( \sin(2 \pi k + x) = \sin(x) \), where \( k \) is an integer, we can simplify: \[ L = \lim_{n \to \infty} n \sin\left(2 \pi \left(\frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}\right) \lfloor n \rfloor\right) \] ### Step 4: Analyze the limit of the sine argument Let: \[ p = \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!} \] As \( n \to \infty \), \( p \) converges to \( e - 1 \). ### Step 5: Substitute back into the limit Thus, we have: \[ L = \lim_{n \to \infty} n \sin(2 \pi p \lfloor n \rfloor) \] Since \( \lfloor n \rfloor \) is approximately \( n \) for large \( n \): \[ L = \lim_{n \to \infty} n \sin(2 \pi (e - 1) n) \] ### Step 6: Use the small angle approximation For large \( n \), \( \sin(x) \) behaves like \( x \) when \( x \) is small. We can rewrite: \[ L = \lim_{n \to \infty} n \cdot 2 \pi (e - 1) n \] ### Step 7: Evaluate the limit This simplifies to: \[ L = 2 \pi (e - 1) n^2 \] As \( n \to \infty \), this approaches infinity unless we consider the behavior of \( \sin \) more closely. ### Step 8: Final comparison Since \( L = k \pi \), we can equate: \[ k = 2 \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|3 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate: lim_(n->oo)(-1)^(n-1)sin(pisqrt(n^2+0. 5 n+1)) ,where n in N

Lim_(n to oo) (-1)^(n)sin(pisqrt(n^(2)+n)), n epsilon N is

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

lim_(n->oo)sin(x/2^n)/(x/2^n)

Evaluate sin{ n pi+(-1)^(n) (pi)/(4) , where n is an integer.

Evaluate sin{ n pi+(-1)^(n) (pi)/(4) , where n is an integer.

Evaluate tan{(-1)^n pi/4} where n is an integer

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =