Home
Class 12
MATHS
There are 10 stations enroute. A train h...

There are 10 stations enroute. A train has to be stopped at 3 of them. Let N be the ways in which the train can be stopped if atleast two of the stopping stations are consecutive. Find the value of `sqrt(N)`.

Text Solution

Verified by Experts

The correct Answer is:
8
Promotional Banner

Topper's Solved these Questions

  • PERMUTATION AND COMBINATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • PARABOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|3 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos

Similar Questions

Explore conceptually related problems

There are 10 stations enroute. A train has to be stopped at 3 of them. Let N be the no of ways is which the train can be stopped if atleast two of the stopping stations are consecutive. Find N.

There are n stations between two cities A and B. A train is to stop at three of these n stations. What is the probaility that no two of these three stations are consecutive ?

Between two junction stations A and B there are 12 intermediate stations. The number of ways in which a train can be made to stop at 4 of these stations so that no two of these halting stations are consecutive, is

There are 10 different books in a shelf. The number of ways in which three books can be selected so that exactly two of them are consecutive is

There are p intermediate stations on a railway line from one terminus to another . In how many ways a train can stop at 3 of these intermediate stations if no two of those stopping stations are to be consecutive ?

Let N denote the number of ways in which n boys can be arranged in a line so that 3 particular boys are seperated then N is equal to

A student has to answer 10 out of 13 questions in an examination. The number of ways in which he can answer if he must answer atleast 3 of the first five questions is

Find the total number of ways in which n distinct objects can be put into two different boxes.

Find the total number of ways in which n distinct objects can be put into two different boxes.

Find the total number of ways in which n distinct objects can be put into two different boxes so that no box remains empty.