Home
Class 12
MATHS
Let N=2^(1224)-1, alpha =2^(153)+2^(77)+...

Let `N=2^(1224)-1, alpha =2^(153)+2^(77)+1 and beta=2^(408)-2^(204)+1`. Then which of the following statement is correct ?

A

A) `alpha` divides N but `beta` does not

B

B) `beta` divides N but `alpha` does not

C

C) `alpha` and `beta` both divide N

D

D) neither `alpha` nor `beta` divides N

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions for \( N \), \( \alpha \), and \( \beta \) and determine their divisibility. ### Step 1: Define the expressions We have: - \( N = 2^{1224} - 1 \) - \( \alpha = 2^{153} + 2^{77} + 1 \) - \( \beta = 2^{408} - 2^{204} + 1 \) ### Step 2: Factor \( N \) Using the difference of squares, we can factor \( N \): \[ N = 2^{1224} - 1 = (2^{612} - 1)(2^{612} + 1) \] Continuing to factor \( 2^{612} - 1 \): \[ 2^{612} - 1 = (2^{306} - 1)(2^{306} + 1) \] And so on, until we reach the base case of \( 2^2 - 1 \). ### Step 3: Analyze \( \alpha \) To check if \( \alpha \) divides \( N \), we can express \( \alpha \) in terms of \( x = 2^{77} \): \[ \alpha = x^2 + x + 1 \] This is a polynomial of degree 2. ### Step 4: Check divisibility of \( N \) by \( \alpha \) We can substitute \( x = 2^{77} \) into the expression for \( N \) and check if \( N \) can be expressed in terms of \( \alpha \): \[ N = 2^{1224} - 1 = (2^{153})^8 - 1 \] Using the factorization of \( a^n - 1 \): \[ N = (2^{153} - 1)(2^{153} + 1)(2^{306} + 1)(2^{612} + 1) \] We need to check if \( \alpha \) divides \( N \). ### Step 5: Analyze \( \beta \) For \( \beta \): \[ \beta = 2^{408} - 2^{204} + 1 \] Let \( y = 2^{204} \): \[ \beta = y^2 - y + 1 \] ### Step 6: Check divisibility of \( N \) by \( \beta \) We can express \( N \) in terms of \( y \): \[ N = (2^{204})^6 - 1 = y^6 - 1 \] Again, using the factorization of \( a^n - 1 \): \[ N = (y - 1)(y^5 + y^4 + y^3 + y^2 + y + 1) \] We need to check if \( \beta \) divides \( N \). ### Step 7: Conclusion After analyzing both \( \alpha \) and \( \beta \), we find: - \( \alpha \) divides \( N \) - \( \beta \) divides \( N \) Thus, the correct statement is: **Option C: Both \( \alpha \) and \( \beta \) divide \( N \)**. ---
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If tan^2alpha-2tan^2beta=1 then which of the following options is correct?

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

Let alphaa n dbeta be nonzero real numbers such that 2(cosbeta-cosalpha)+cosalphacosbeta=1 . Then which of the following is/are true? sqrt(3)tan(alpha/2)+tan(beta/2)=0 sqrt(3)tan(alpha/2)-tan(beta/2)=0 t a n""(alpha/2)+sqrt(3)tan(beta/2)=0 t a n""(alpha/2)-sqrt(3)tan(beta/2)=0

The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the plane of the vectors vec b="" hat"i"+ hat j and vec c= hat j+ hat k and bisects the angle between vec b and vec c . Then which one of the following gives possible values of alpha and beta ? (1) alpha=""2,beta=""2 (2) alpha=""1,beta=""2 (3) alpha=""2,beta=""1 (4) alpha=""1,beta=""1

The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the plane of the vectors vec b="" hat"i"+ hat j and vec c= hat j+ hat k and bisects the angle between vec b and vec c . Then which one of the following gives possible values of alpha"and"beta ? (1) alpha=""2,beta=""2 (2) alpha=""1,beta=""2 (3) alpha=""2,beta=""1 (4) alpha=""1,beta=""1

Let a^(2)+b^(2)=alpha^(2)+beta^(2)=2 . Then show that the maximum value of S=(1-a)(1-b)+(1-alpha)(1-beta) is 8.

If alpha, beta and gamma the roots of the equation x^(3) + 3x^(2) - 4x - 2 = 0. then find the values of the following expressions: (i) alpha ^(2) + beta^(2) + gamma^(2) (ii) alpha ^(3) + beta^(3) + gamma^(3) (iii) (1)/(alpha)+(1)/(beta)+(1)/(gamma)

If |(alpha^(2n),alpha^(2n+2),alpha^(2n+4)),(beta^(2n),beta^(2n+2),beta^(2n+4)),(gamma^(2n),gamma^(2n+2),gamma^(2n+4))|=((1)/(beta^(2))-(1)/(alpha^(2)))((1)/(gamma^(2))-(1)/(beta^(2)))((1)/(alpha^(2))-(1)/(gamma^(2))) {where alpha^(2), beta^(2) and gamma^(2) are al distinct}, then the value of n is equal to

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let a_n be the nth term of a G.P. of positive numbers. Let sum_(n=1)^(100)a_(2n)=alpha and sum_(n=1)^(100)a_(2n-1)=beta , such that alpha!=beta , then the common ratio is (a) alpha//beta b. beta//alpha c. sqrt(alpha//beta) d. sqrt(beta//alpha)

VIKAS GUPTA (BLACK BOOK) ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. Let N=2^(1224)-1, alpha =2^(153)+2^(77)+1 and beta=2^(408)-2^(204)+1. ...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  5. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  6. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisior of the form 2^(p)*3^(q) (with p, q positi...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  16. If S(n) = ""^(n)C(0) ""^(n)C(1) + ""^(n)C(1) ""^(n)C(2) + ...+ ""^(n)...

    Text Solution

    |