Home
Class 12
MATHS
If (1+x)^(2010)=C(0)+C(1)x+C(2)x^(2)+ ……...

If `(1+x)^(2010)=C_(0)+C_(1)x+C_(2)x^(2)+ …….+C_(2010) x^(2010)` then the sum of series `C_(2)+C_(5)+C_(8)+ ……… +C_(2009)` equals to :

A

`(1)/(2)(2^(2010)-1)`

B

`(1)/(3) (2^(2010)-1)`

C

`(1)/(2) (2^(2009)-1)`

D

`(1)/(3)(2^(2009)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum of the series \( C_2 + C_5 + C_8 + \ldots + C_{2009} \) from the expansion of \( (1+x)^{2010} = C_0 + C_1 x + C_2 x^2 + \ldots + C_{2010} x^{2010} \), we can use the properties of roots of unity. ### Step-by-Step Solution: 1. **Understanding the Coefficients**: The coefficients \( C_k \) in the expansion of \( (1+x)^{2010} \) are given by \( C_k = \binom{2010}{k} \). 2. **Identifying the Series**: We need to find the sum \( C_2 + C_5 + C_8 + \ldots + C_{2009} \). This series consists of coefficients where the indices are of the form \( 2 + 3k \) for \( k = 0, 1, 2, \ldots \). 3. **Using Roots of Unity**: To extract the coefficients where the index is of the form \( 2 + 3k \), we can use the roots of unity filter. Let \( \omega = e^{2\pi i / 3} \) be a primitive cube root of unity. The sum can be calculated using: \[ S = \frac{1}{3} \left( (1+1)^{2010} + (1+\omega)^{2010} + (1+\omega^2)^{2010} \right) \] 4. **Calculating Each Term**: - For the first term: \[ (1+1)^{2010} = 2^{2010} \] - For the second term: \[ 1 + \omega = 2 \cos\left(\frac{\pi}{3}\right) = 1 \quad \Rightarrow \quad (1+\omega)^{2010} = 1^{2010} = 1 \] - For the third term: \[ 1 + \omega^2 = 2 \cos\left(-\frac{\pi}{3}\right) = 1 \quad \Rightarrow \quad (1+\omega^2)^{2010} = 1^{2010} = 1 \] 5. **Summing the Results**: Now substituting back into the equation for \( S \): \[ S = \frac{1}{3} \left( 2^{2010} + 1 + 1 \right) = \frac{1}{3} \left( 2^{2010} + 2 \right) = \frac{2^{2010} + 2}{3} \] 6. **Final Result**: Thus, the sum \( C_2 + C_5 + C_8 + \ldots + C_{2009} \) is: \[ \frac{2^{2010} + 2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , find the sum of the series (C_(0))/(2) -(C_(1))/(6) + (C_(2))/(10) + (C_(3))/(14) -...+ (-1)^(n) (C_(n))/(4n+2) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

If (1 + x - 2 x^(2))^(6) = 1 + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(12) x^(12) , then the value of C_(2) + C_(4) + C_(6) + …+ C_(12) is

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. If (1+x)^(2010)=C(0)+C(1)x+C(2)x^(2)+ …….+C(2010) x^(2010) then the su...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  5. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  6. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisior of the form 2^(p)*3^(q) (with p, q positi...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  16. If S(n) = ""^(n)C(0) ""^(n)C(1) + ""^(n)C(1) ""^(n)C(2) + ...+ ""^(n)...

    Text Solution

    |