Home
Class 12
MATHS
The number N=""^(20)C(7)-""^(20)C(8)+""^...

The number `N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20)` is not divisible by :

A

A) 3

B

B) 7

C

C) 11

D

D) 19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ N = \binom{20}{7} - \binom{20}{8} + \binom{20}{9} - \binom{20}{10} + \ldots - \binom{20}{20} \] ### Step 1: Rewrite the expression using summation notation We can express \(N\) in summation notation as follows: \[ N = \sum_{r=7}^{20} (-1)^{r-7} \binom{20}{r} \] ### Step 2: Use the Binomial Theorem We can utilize the Binomial Theorem, which states that: \[ (1 + x)^n = \sum_{r=0}^{n} \binom{n}{r} x^r \] For our case, we can consider \(x = -1\): \[ (1 - 1)^{20} = \sum_{r=0}^{20} \binom{20}{r} (-1)^r = 0 \] ### Step 3: Split the summation We can split the summation into two parts: one for even \(r\) and one for odd \(r\): \[ 0 = \sum_{r=0}^{20} \binom{20}{r} (-1)^r = \sum_{r \text{ even}} \binom{20}{r} - \sum_{r \text{ odd}} \binom{20}{r} \] ### Step 4: Relate to our expression The expression \(N\) can be related to the above summation. We can rewrite \(N\) as: \[ N = \sum_{r=0}^{20} (-1)^r \binom{20}{r} - \left( \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{6} \right) \] ### Step 5: Calculate the first part From the Binomial Theorem, we know: \[ \sum_{r=0}^{20} (-1)^r \binom{20}{r} = 0 \] Thus, we have: \[ N = -\left( \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{6} \right) \] ### Step 6: Calculate the binomial coefficients Now we need to calculate the sum of the first 7 binomial coefficients: \[ \binom{20}{0} = 1, \quad \binom{20}{1} = 20, \quad \binom{20}{2} = 190, \quad \binom{20}{3} = 1140, \quad \binom{20}{4} = 4845, \quad \binom{20}{5} = 15504, \quad \binom{20}{6} = 38760 \] Calculating the total: \[ 1 + 20 + 190 + 1140 + 4845 + 15504 + 38760 = 60420 \] ### Step 7: Substitute back into \(N\) Thus, we have: \[ N = -60420 \] ### Step 8: Prime factorization of \(N\) Now we perform the prime factorization of \(60420\): \[ 60420 = 2^2 \times 3 \times 5 \times 7 \times 17 \] ### Step 9: Determine divisibility Now we check which of the options \(3, 7, 11, 19\) \(N\) is not divisible by: - \(N\) is divisible by \(3\) - \(N\) is divisible by \(7\) - \(N\) is divisible by \(19\) - \(N\) is **not divisible by \(11\)** ### Final Answer Thus, the number \(N\) is not divisible by: \[ \text{Option C: } 11 \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is divisible by :

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

The sum of the series ""^20C_0 - ""^20C_1 + ""^20C_2 - ""^20C_3 +…….""^20C_10 is

The sum of the series ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10 is:

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. The number N=""^(20)C(7)-""^(20)C(8)+""^(20)C(9)-""^(20)C(10)+….. -""^...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  5. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  6. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisior of the form 2^(p)*3^(q) (with p, q positi...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  16. If S(n) = ""^(n)C(0) ""^(n)C(1) + ""^(n)C(1) ""^(n)C(2) + ...+ ""^(n)...

    Text Solution

    |