Home
Class 12
MATHS
If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z...

If `n gt 3`, then `xyz^(n)C_(0)-(x-1)(y-1)(z-1)""^(n)C_(1)+(x-2)(y-2)(z-2)""^(n)C_(2)-`
`(x-3)(y-3)(z-3)""^(n)C_(3)+…..+(-1)^(n)(x-n)(y-n)(z-n)""^(n)C_(n)` equals :

A

xyz

B

`x+y+z`

C

`xy+yz+zx`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ xyz^{(n)}C_{0} - (x-1)(y-1)(z-1)^{(n)}C_{1} + (x-2)(y-2)(z-2)^{(n)}C_{2} - (x-3)(y-3)(z-3)^{(n)}C_{3} + \ldots + (-1)^{n}(x-n)(y-n)(z-n)^{(n)}C_{n} \] ### Step 1: Rewrite the expression We can rewrite the expression in a more compact summation form: \[ \sum_{r=0}^{n} (-1)^{r} (x-r)(y-r)(z-r) C_{r}^{(n)} \] ### Step 2: Expand the terms We can expand the terms \((x-r)(y-r)(z-r)\): \[ (x-r)(y-r)(z-r) = xyz - r(xy + xz + yz) + r^2(x+y+z) - r^3 \] ### Step 3: Substitute back into the summation Substituting the expanded form back into the summation gives us: \[ \sum_{r=0}^{n} (-1)^{r} \left( xyz - r(xy + xz + yz) + r^2(x+y+z) - r^3 \right) C_{r}^{(n)} \] ### Step 4: Separate the summation We can separate the summation into four different parts: 1. \(xyz \sum_{r=0}^{n} (-1)^{r} C_{r}^{(n)}\) 2. \(- (xy + xz + yz) \sum_{r=0}^{n} (-1)^{r} r C_{r}^{(n)}\) 3. \(+ (x+y+z) \sum_{r=0}^{n} (-1)^{r} r^2 C_{r}^{(n)}\) 4. \(- \sum_{r=0}^{n} (-1)^{r} r^3 C_{r}^{(n)}\) ### Step 5: Evaluate each summation 1. **First Summation**: The first summation evaluates to 0 because it is the sum of binomial coefficients with alternating signs: \[ \sum_{r=0}^{n} (-1)^{r} C_{r}^{(n)} = 0 \] 2. **Second Summation**: The second summation also evaluates to 0: \[ \sum_{r=0}^{n} (-1)^{r} r C_{r}^{(n)} = 0 \] 3. **Third Summation**: The third summation evaluates to 0 as well: \[ \sum_{r=0}^{n} (-1)^{r} r^2 C_{r}^{(n)} = 0 \] 4. **Fourth Summation**: The fourth summation evaluates to 0: \[ \sum_{r=0}^{n} (-1)^{r} r^3 C_{r}^{(n)} = 0 \] ### Step 6: Combine the results Since all four parts of the summation evaluate to 0, we conclude that the entire expression is equal to 0: \[ xyz \cdot 0 - (xy + xz + yz) \cdot 0 + (x+y+z) \cdot 0 - 0 = 0 \] ### Final Result Thus, the value of the given expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If n > 3, then x y C_0-(x-1)(y-1)C_1+(x-2)(y-2)C_2-(x-3)(y-3)C_3+..............+(-1)^n(x-n)(y-n)C_n, equals

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

VIKAS GUPTA (BLACK BOOK) ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  5. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  6. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisior of the form 2^(p)*3^(q) (with p, q positi...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  16. If S(n) = ""^(n)C(0) ""^(n)C(1) + ""^(n)C(1) ""^(n)C(2) + ...+ ""^(n)...

    Text Solution

    |