Home
Class 12
MATHS
Let ((n),(k)) represents the combinatio...

Let `((n),(k))` represents the combination of `'n'` things taken `'k'` at a time, then the value of the sum `((99),(97))+((98),(96))+((97),(95))+.........+((3),(1))+((2),(0))` equals-

A

`((99),(97))`

B

`((100),(98))`

C

`((99),(98))`

D

`((100),(97))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ \sum_{k=0}^{2} \binom{99-k}{97-k} = \binom{99}{97} + \binom{98}{96} + \binom{97}{95} + \ldots + \binom{3}{1} + \binom{2}{0} \] ### Step 1: Rewrite the combinations We can express the combinations in a more manageable form. The combination \(\binom{n}{r}\) can be rewritten as: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Thus, we can express each term in the sum: \[ \binom{99}{97} = \frac{99!}{97! \cdot 2!}, \quad \binom{98}{96} = \frac{98!}{96! \cdot 2!}, \quad \ldots, \quad \binom{2}{0} = \frac{2!}{0! \cdot 2!} \] ### Step 2: Factor out the common denominator Notice that each term has a common denominator of \(2!\). We can factor this out: \[ \sum_{k=0}^{2} \binom{99-k}{97-k} = \frac{1}{2!} \left( \frac{99!}{97!} + \frac{98!}{96!} + \ldots + \frac{2!}{0!} \right) \] ### Step 3: Simplify the factorial expressions Now, we can simplify each term: \[ \frac{99!}{97!} = 99 \cdot 98, \quad \frac{98!}{96!} = 98, \quad \frac{97!}{95!} = 97 \cdot 96, \ldots, \frac{3!}{1!} = 3 \cdot 2 \] ### Step 4: Recognize the pattern The sum can be recognized as a telescoping series. Each term can be expressed as: \[ \sum_{k=0}^{97} (99-k)(98-k) \] This can be simplified using the hockey-stick identity in combinatorics. ### Step 5: Apply the hockey-stick identity Using the hockey-stick identity: \[ \sum_{i=r}^{n} \binom{i}{r} = \binom{n+1}{r+1} \] We can evaluate the sum: \[ \sum_{k=0}^{2} \binom{99-k}{2} = \binom{100}{3} \] ### Step 6: Calculate the final result Now we can compute \(\binom{100}{3}\): \[ \binom{100}{3} = \frac{100 \cdot 99 \cdot 98}{3 \cdot 2 \cdot 1} = \frac{970200}{6} = 161700 \] ### Final Answer Thus, the value of the sum is: \[ \boxed{161700} \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|9 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C _r denotes the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C_(r+1)

Prove that the number of combinations of n things taken r at a time in which p particular things always occur is .^(n-p)C_(r-p)

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C _(r+1)

If ""^(n)C _4 denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2)C_(r+1)

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

VIKAS GUPTA (BLACK BOOK) ENGLISH-BIONMIAL THEOREM-Exercise-4 : Subjective Type Problems
  1. Let ((n),(k)) represents the combination of 'n' things taken 'k' at ...

    Text Solution

    |

  2. The sum of series 3*""^(2007)C(0)-8*""^(2007)C(1)+13*""^(2007)C(2)-18...

    Text Solution

    |

  3. In the polynomial function f(x)=(x-1)(x^(2)-2)(x^(3)-3)……..(x^(11)-11...

    Text Solution

    |

  4. If 3^(101)-2^(100) is divided by 11, the remainder is

    Text Solution

    |

  5. Find the hundred's digit in the co-efficient of x^(17) in the expansio...

    Text Solution

    |

  6. Let x=(3sqrt(6)+7)^(89). If {x} denotes the fractional part of 'x' the...

    Text Solution

    |

  7. Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and Tn=sum(r=0)^n^(3n)C(3r), then ...

    Text Solution

    |

  8. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  9. Let q be a positive with q le 50. If the sum ""^(98)C(30)+2" "^(97)C...

    Text Solution

    |

  10. The remainder when (sum(k=1)^(5) ""^(20)C(2k-1))^(6) is divided by 11,...

    Text Solution

    |

  11. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  12. In the polynomial (x-1)(x^(2)-2)(x^(3)-3)…(x^(11)-11), the coefficient...

    Text Solution

    |

  13. Let the sum of all divisior of the form 2^(p)*3^(q) (with p, q positi...

    Text Solution

    |

  14. Find the sum of possible real values of x for which the sixth term of ...

    Text Solution

    |

  15. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  16. If S(n) = ""^(n)C(0) ""^(n)C(1) + ""^(n)C(1) ""^(n)C(2) + ...+ ""^(n)...

    Text Solution

    |