Home
Class 12
MATHS
If (1+x+x^2+x^3)^100=a0+a1x+a2x^2+.........

If `(1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300,` then

A

`a_(1)=100`

B

`a_(0)+a_(1)+a_(2)+…..+a_(300)` is divisible by 1024

C

coefficients equidistant from beginning and end are equal

D

`a_(0)+a_(2)+a_(4)+……..+a_(300)=a_(1)+a_(3)+a_(5)+……+a_(299)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \( (1 + x + x^2 + x^3)^{100} \) and find the coefficients \( a_0, a_1, a_2, \ldots, a_{300} \) in the expansion. ### Step-by-Step Solution: 1. **Understanding the Expression**: The expression can be rewritten using the formula for the sum of a geometric series: \[ 1 + x + x^2 + x^3 = \frac{1 - x^4}{1 - x} \] Therefore, we can express our original expression as: \[ (1 + x + x^2 + x^3)^{100} = \left(\frac{1 - x^4}{1 - x}\right)^{100} = (1 - x^4)^{100} \cdot (1 - x)^{-100} \] 2. **Using Binomial Theorem**: We can apply the Binomial Theorem to expand both parts: - For \( (1 - x^4)^{100} \): \[ (1 - x^4)^{100} = \sum_{k=0}^{100} \binom{100}{k} (-1)^k x^{4k} \] - For \( (1 - x)^{-100} \): \[ (1 - x)^{-100} = \sum_{m=0}^{\infty} \binom{m + 99}{99} x^m \] 3. **Finding Coefficients**: The coefficient \( a_n \) of \( x^n \) in the expansion of \( (1 + x + x^2 + x^3)^{100} \) can be found by combining the two expansions: \[ a_n = \sum_{k=0}^{\lfloor n/4 \rfloor} \binom{100}{k} (-1)^k \binom{n - 4k + 99}{99} \] This formula gives us the coefficients \( a_n \) for \( n = 0, 1, 2, \ldots, 300 \). 4. **Finding Specific Coefficients**: - To find \( a_1 \): \[ a_1 = \sum_{k=0}^{\lfloor 1/4 \rfloor} \binom{100}{k} (-1)^k \binom{1 - 4k + 99}{99} \] Since \( k = 0 \) is the only valid term: \[ a_1 = \binom{100}{0} (-1)^0 \binom{100}{99} = 1 \cdot 1 \cdot 100 = 100 \] 5. **Summation of Coefficients**: The total sum of the coefficients \( a_0 + a_1 + a_2 + \ldots + a_{300} \) can be found by evaluating the expression at \( x = 1 \): \[ (1 + 1 + 1 + 1)^{100} = 4^{100} \] 6. **Checking for Equidistance**: Since the polynomial is symmetric, the coefficients equidistant from the beginning and end are equal. This means \( a_k = a_{300-k} \). 7. **Divisibility Check**: To check if \( 2199 \) is divisible by \( 1024 \): - \( 2199 \) is not divisible by \( 1024 \) since \( 1024 \) is \( 2^{10} \) and \( 2199 \) is not a multiple of \( 1024 \). ### Conclusion: From the analysis, we find: - \( a_1 = 100 \) (Option A is correct) - The sum of coefficients \( a_0 + a_1 + \ldots + a_{300} = 4^{100} \) (Option B is correct) - Coefficients equidistant from beginning and end are equal (Option C is correct) - \( 2199 \) is not divisible by \( 1024 \) (Option D is incorrect) Thus, the correct options are A, B, and C.
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1 + 3x - 2x^2)^10 = a_0 + a_1x + a_2x^2 +…..+a_20 x^20 thn prove that a_1 +a_3 + a_5 + ……+a_19 = 2^9 - 2^19

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (1 + x +x^2)^n = a_0 +a_1x + a_2x^2 + ….+a_(2n)x^(2n) then prove that a_0 +a_2 +a_4+……+a_(2n) = (3^n +1)/(2)

If (1-x+x^2)^n=a_0+a_1x+a_2x^2+ .........+a_(2n)x^(2n),\ find the value of a_0+a_2+a_4+........+a_(2n)dot

If (1+2x+3x^2)^10=a_0+a_1x+a_2x^2+……..+a_20x^20 then (A) a_1=20 (B) a_2=210 (C) a_3=1500 (D) a_20=2^3.3^7

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is