Home
Class 12
MATHS
sum(r=0)^(4) (-1)^(r )""^(16)C(r) is div...

`sum_(r=0)^(4) (-1)^(r )""^(16)C_(r)` is divisible by :

A

5

B

7

C

11

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=0}^{4} (-1)^{r} \binom{16}{r} \), we will evaluate the expression step by step. ### Step 1: Write the summation explicitly We start by writing out the summation: \[ \sum_{r=0}^{4} (-1)^{r} \binom{16}{r} = (-1)^{0} \binom{16}{0} + (-1)^{1} \binom{16}{1} + (-1)^{2} \binom{16}{2} + (-1)^{3} \binom{16}{3} + (-1)^{4} \binom{16}{4} \] ### Step 2: Calculate each term Now we calculate each term: - For \( r = 0 \): \[ (-1)^{0} \binom{16}{0} = 1 \cdot 1 = 1 \] - For \( r = 1 \): \[ (-1)^{1} \binom{16}{1} = -1 \cdot 16 = -16 \] - For \( r = 2 \): \[ (-1)^{2} \binom{16}{2} = 1 \cdot \frac{16 \times 15}{2} = 120 \] - For \( r = 3 \): \[ (-1)^{3} \binom{16}{3} = -1 \cdot \frac{16 \times 15 \times 14}{3 \times 2 \times 1} = -560 \] - For \( r = 4 \): \[ (-1)^{4} \binom{16}{4} = 1 \cdot \frac{16 \times 15 \times 14 \times 13}{4 \times 3 \times 2 \times 1} = 1820 \] ### Step 3: Combine the results Now we combine all the calculated terms: \[ 1 - 16 + 120 - 560 + 1820 \] Calculating this step by step: 1. \( 1 - 16 = -15 \) 2. \( -15 + 120 = 105 \) 3. \( 105 - 560 = -455 \) 4. \( -455 + 1820 = 1365 \) Thus, the result of the summation is: \[ \sum_{r=0}^{4} (-1)^{r} \binom{16}{r} = 1365 \] ### Step 4: Check divisibility Now we need to check the divisibility of \( 1365 \): - Dividing by \( 5 \): \( 1365 \div 5 = 273 \) (divisible) - Dividing by \( 7 \): \( 1365 \div 7 = 195 \) (not divisible) - Dividing by \( 11 \): \( 1365 \div 11 = 124.09 \) (not divisible) - Dividing by \( 13 \): \( 1365 \div 13 = 105 \) (not divisible) ### Conclusion The only number that \( 1365 \) is divisible by from the options given is \( 5 \). Thus, the answer is: \[ \text{The correct option is } 5. \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value fo (G-S)is

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value of K + G is

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to

If n is an even natural number , then sum_(r=0)^(n) (( -1)^(r))/(""^(n)C_(r)) equals

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum__(r=1)^(50) (""^(50)C_(r))^(2), R = sum_(r=0)^(100) (-1)^(r) (""^(100)C_(r))^(2) The value of P - Q is equal to

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :