Home
Class 12
MATHS
Let n in N, Sn=sum(r=0)^(3n)^(3n)Cr and ...

Let `n in N, S_n=sum_(r=0)^(3n)^(3n)C_r` and `T_n=sum_(r=0)^n^(3n)C_(3r)`, then `|S_n-3T_n|` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|S_n - 3T_n|\), where: - \(S_n = \sum_{r=0}^{3n} \binom{3n}{r}\) - \(T_n = \sum_{r=0}^{n} \binom{3n}{3r}\) ### Step 1: Calculate \(S_n\) Using the Binomial Theorem, we know that: \[ (1 + x)^{3n} = \sum_{r=0}^{3n} \binom{3n}{r} x^r \] Setting \(x = 1\): \[ (1 + 1)^{3n} = 2^{3n} = \sum_{r=0}^{3n} \binom{3n}{r} \] Thus, \[ S_n = 2^{3n} \] ### Step 2: Calculate \(T_n\) To find \(T_n\), we consider the sum of the coefficients where \(r\) is a multiple of 3. We can use the roots of unity filter. Let \(\omega = e^{2\pi i / 3}\), which is a primitive cube root of unity. We can evaluate: \[ T_n = \frac{1}{3} \left( S_n + (1 + \omega)^{3n} + (1 + \omega^2)^{3n} \right) \] Calculating \(1 + \omega\) and \(1 + \omega^2\): - \(1 + \omega = e^{\pi i / 3}\) - \(1 + \omega^2 = e^{-\pi i / 3}\) Thus, \[ (1 + \omega)^{3n} = \left(e^{\pi i / 3}\right)^{3n} = e^{\pi i n} = (-1)^n \] \[ (1 + \omega^2)^{3n} = \left(e^{-\pi i / 3}\right)^{3n} = e^{-\pi i n} = (-1)^n \] Substituting back into the equation for \(T_n\): \[ T_n = \frac{1}{3} \left( 2^{3n} + (-1)^n + (-1)^n \right) = \frac{1}{3} \left( 2^{3n} + 2(-1)^n \right) \] Thus, \[ T_n = \frac{2^{3n}}{3} + \frac{2(-1)^n}{3} \] ### Step 3: Calculate \(|S_n - 3T_n|\) Now we substitute \(S_n\) and \(T_n\) into \(|S_n - 3T_n|\): \[ 3T_n = 3 \left( \frac{2^{3n}}{3} + \frac{2(-1)^n}{3} \right) = 2^{3n} + 2(-1)^n \] Thus, \[ S_n - 3T_n = 2^{3n} - (2^{3n} + 2(-1)^n) = -2(-1)^n \] Taking the absolute value: \[ |S_n - 3T_n| = | -2(-1)^n | = 2 \] ### Final Answer Therefore, the final result is: \[ |S_n - 3T_n| = 2 \]
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=0)^n^(n+r)C_r .

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

sum_(r=0)^m .^(n+r)C_n is equal to

If s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)), then t_n/s_n=

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .